Abstract

We present how the angular momentum of light can play an important role to induce a dual or anti-dual behaviour on a dielectric particle. Although the material the particle is made of is not dual, i.e. a dielectric does not interact with an electrical field in the same way as it does with a magnetic one, a spherical particle can behave as a dual system when the correct excitation beam is chosen. We study the conditions under which this dual or anti-dual behaviour can be induced.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proceedings of the Royal Society of London. Series A133, 60–72 (1931).
    [CrossRef]
  2. K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
    [CrossRef]
  3. J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, New York, 1998).
  4. M. Calkin, “An invariance property of the free electromagnetic field,” Am. J. Phys.33, 958–960 (1965).
    [CrossRef]
  5. I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868 (2012).
  6. X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Excitation of single multipolar modes with engineered cylindrically symmetric fields,” Opt. Express20, 24536–24544 (2012).
    [CrossRef] [PubMed]
  7. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
    [CrossRef]
  8. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A28, 54–60 (2011).
    [CrossRef]
  9. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric coreshell nanoparticles,” ACS Nano6, 5489–5497 (2012).
    [CrossRef] [PubMed]
  10. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011).
    [CrossRef] [PubMed]
  11. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
    [CrossRef]
  12. J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
    [CrossRef] [PubMed]
  13. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013).
    [PubMed]
  14. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk/’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
    [CrossRef] [PubMed]
  15. X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett.38, 1857–1859 (2013).
    [CrossRef] [PubMed]
  16. A. Alu and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?”J. Nanophoton.4, 041590 (2010).
    [CrossRef]
  17. B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett.36, 728–730 (2011).
    [CrossRef]
  18. W.-K. Tung, Group Theory in Physics(World Scientific, Singapore, 1985).
  19. V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, Second Edition: Volume 4(Butterworth-Heinemann, 1982).
  20. I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A86, 042103 (2012).
    [CrossRef]
  21. A. Messiah, Quantum Mechanics(Dover, New York, 1999).
  22. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories(Springer, Berlin, 2011).
    [CrossRef]
  23. M. E. Rose, Multipole Fields(Wiley, New York, 1955).
  24. X. Zambrana-Puyalto and G. Molina-Terriza, “The role of the angular momentum of light in mie scattering. excitation of dielectric spheres with laguerre-gaussian modes,” J. Quant. Spectrosc. Radiat. Transfer (2012).
  25. G. Molina-Terriza, “Determination of the total angular momentum of a paraxial beam,” Phys. Rev. A78, 053819 (2008).
    [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983).
  27. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am.73, 765–767 (1983).
    [CrossRef]
  28. H. van de Hulst, Light Scattering by Small Prticles(Wiley, New York, 1957).
  29. R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011)
    [CrossRef]
  30. B. Richards and E. Wolf, “Electromagnetism Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A253, 358–379 (1959)
    [CrossRef]
  31. L. Novotny and B. Hecht, Principles of nano-optics(Cambridge University Press, Cambdrige, MA, 2006).
    [CrossRef]
  32. N. M. Mojarad, V. Sandoghdar, and M. Agio, “Plasmon spectra of nanospheres under a tightly focused beam,” J. Opt. Soc. Am. B25, 651–658 (2008).
    [CrossRef]
  33. N. M. Mojarad and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances byfocusing radially-polarized beams,” Opt. Express17, 117–122 (2009).
    [CrossRef] [PubMed]
  34. F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer,” arXiv:physics/0410021 (2004).
  35. E. Palik, Handbook of Optical Constants of Solids(Academic Press, 1985).
  36. M. Bass, Handbook of Optics, 2nd ed. (McGraw-Hill, 1994).

2013

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013).
[PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk/’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett.38, 1857–1859 (2013).
[CrossRef] [PubMed]

2012

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A86, 042103 (2012).
[CrossRef]

X. Zambrana-Puyalto and G. Molina-Terriza, “The role of the angular momentum of light in mie scattering. excitation of dielectric spheres with laguerre-gaussian modes,” J. Quant. Spectrosc. Radiat. Transfer (2012).

X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Excitation of single multipolar modes with engineered cylindrically symmetric fields,” Opt. Express20, 24536–24544 (2012).
[CrossRef] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric coreshell nanoparticles,” ACS Nano6, 5489–5497 (2012).
[CrossRef] [PubMed]

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

2011

2010

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

A. Alu and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?”J. Nanophoton.4, 041590 (2010).
[CrossRef]

2009

2008

N. M. Mojarad, V. Sandoghdar, and M. Agio, “Plasmon spectra of nanospheres under a tightly focused beam,” J. Opt. Soc. Am. B25, 651–658 (2008).
[CrossRef]

G. Molina-Terriza, “Determination of the total angular momentum of a paraxial beam,” Phys. Rev. A78, 053819 (2008).
[CrossRef]

1983

1965

M. Calkin, “An invariance property of the free electromagnetic field,” Am. J. Phys.33, 958–960 (1965).
[CrossRef]

1959

B. Richards and E. Wolf, “Electromagnetism Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A253, 358–379 (1959)
[CrossRef]

1931

P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proceedings of the Royal Society of London. Series A133, 60–72 (1931).
[CrossRef]

Agio, M.

Aizpurua, J.

Albella, P.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

Alu, A.

A. Alu and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?”J. Nanophoton.4, 041590 (2010).
[CrossRef]

Bass, M.

M. Bass, Handbook of Optics, 2nd ed. (McGraw-Hill, 1994).

Bendtz, K.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Berestetskii, V. B.

V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, Second Edition: Volume 4(Butterworth-Heinemann, 1982).

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983).

Calkin, M.

M. Calkin, “An invariance property of the free electromagnetic field,” Am. J. Phys.33, 958–960 (1965).
[CrossRef]

Chantada, L.

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

de la Osa, R. A.

Dirac, P. A. M.

P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proceedings of the Royal Society of London. Series A133, 60–72 (1931).
[CrossRef]

Enderlein, J.

F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer,” arXiv:physics/0410021 (2004).

Engheta, N.

A. Alu and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?”J. Nanophoton.4, 041590 (2010).
[CrossRef]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Eyraud, C.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

Fernandez-Corbaton, I.

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett.38, 1857–1859 (2013).
[CrossRef] [PubMed]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A86, 042103 (2012).
[CrossRef]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868 (2012).

Froufe-Pérez, L.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

Froufe-Pérez, L. S.

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk/’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

García-Camara, B.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

García-Cámara, B

R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011)
[CrossRef]

García-Cámara, B.

García-Etxarri, A.

Geffrin, J.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

Giles, C. L.

Gomez-Medina, R.

Gómez-Medina, R.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011).
[CrossRef] [PubMed]

R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011)
[CrossRef]

González, F.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett.36, 728–730 (2011).
[CrossRef]

R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011)
[CrossRef]

Gouesbet, G.

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories(Springer, Berlin, 2011).
[CrossRef]

Gréhan, G.

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories(Springer, Berlin, 2011).
[CrossRef]

Hächler, H.-P.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of nano-optics(Cambridge University Press, Cambdrige, MA, 2006).
[CrossRef]

Hirt, A.M.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, New York, 1998).

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013).
[PubMed]

Juan, M. L.

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett.38, 1857–1859 (2013).
[CrossRef] [PubMed]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868 (2012).

Kerker, M.

Kivshar, Y. S.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric coreshell nanoparticles,” ACS Nano6, 5489–5497 (2012).
[CrossRef] [PubMed]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk/’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013).
[PubMed]

Lifshitz, E. M.

V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, Second Edition: Volume 4(Butterworth-Heinemann, 1982).

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

Litman, A.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

Liu, W.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric coreshell nanoparticles,” ACS Nano6, 5489–5497 (2012).
[CrossRef] [PubMed]

López, C.

Luk/’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk/’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Mermod, P.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Messiah, A.

A. Messiah, Quantum Mechanics(Dover, New York, 1999).

Michael, P.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Milstead, D.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Minovich, A.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868 (2012).

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk/’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric coreshell nanoparticles,” ACS Nano6, 5489–5497 (2012).
[CrossRef] [PubMed]

Mojarad, N. M.

Molina-Terriza, G.

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett.38, 1857–1859 (2013).
[CrossRef] [PubMed]

X. Zambrana-Puyalto and G. Molina-Terriza, “The role of the angular momentum of light in mie scattering. excitation of dielectric spheres with laguerre-gaussian modes,” J. Quant. Spectrosc. Radiat. Transfer (2012).

X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Excitation of single multipolar modes with engineered cylindrically symmetric fields,” Opt. Express20, 24536–24544 (2012).
[CrossRef] [PubMed]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A86, 042103 (2012).
[CrossRef]

G. Molina-Terriza, “Determination of the total angular momentum of a paraxial beam,” Phys. Rev. A78, 053819 (2008).
[CrossRef]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868 (2012).

Moreno, F.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett.36, 728–730 (2011).
[CrossRef]

R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011)
[CrossRef]

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric coreshell nanoparticles,” ACS Nano6, 5489–5497 (2012).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A28, 54–60 (2011).
[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011).
[CrossRef] [PubMed]

R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011)
[CrossRef]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013).
[PubMed]

L. Novotny and B. Hecht, Principles of nano-optics(Cambridge University Press, Cambdrige, MA, 2006).
[CrossRef]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids(Academic Press, 1985).

Pampaloni, F.

F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer,” arXiv:physics/0410021 (2004).

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013).
[PubMed]

Pitaevskii, L. P.

V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, Second Edition: Volume 4(Butterworth-Heinemann, 1982).

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetism Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A253, 358–379 (1959)
[CrossRef]

Rose, M. E.

M. E. Rose, Multipole Fields(Wiley, New York, 1955).

Sáenz, J. J.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013).
[PubMed]

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011).
[CrossRef] [PubMed]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A28, 54–60 (2011).
[CrossRef]

R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011)
[CrossRef]

Saiz, J. M.

Sandoghdar, V.

Scheffold, F.

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Sloan, T.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Suárez-Lacalle, I.

R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011)
[CrossRef]

Tegner, C.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Thorarinsson, S.B.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Tischler, N.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868 (2012).

Tung, W.-K.

W.-K. Tung, Group Theory in Physics(World Scientific, Singapore, 1985).

Vaillon, R.

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

van de Hulst, H.

H. van de Hulst, Light Scattering by Small Prticles(Wiley, New York, 1957).

Vidal, X.

Wang, D.-S.

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013).
[PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetism Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A253, 358–379 (1959)
[CrossRef]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk/’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

Zambrana-Puyalto, X.

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett.38, 1857–1859 (2013).
[CrossRef] [PubMed]

X. Zambrana-Puyalto and G. Molina-Terriza, “The role of the angular momentum of light in mie scattering. excitation of dielectric spheres with laguerre-gaussian modes,” J. Quant. Spectrosc. Radiat. Transfer (2012).

X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Excitation of single multipolar modes with engineered cylindrically symmetric fields,” Opt. Express20, 24536–24544 (2012).
[CrossRef] [PubMed]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A86, 042103 (2012).
[CrossRef]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868 (2012).

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

ACS Nano

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric coreshell nanoparticles,” ACS Nano6, 5489–5497 (2012).
[CrossRef] [PubMed]

Am. J. Phys.

M. Calkin, “An invariance property of the free electromagnetic field,” Am. J. Phys.33, 958–960 (1965).
[CrossRef]

J. Nanophoton.

R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011)
[CrossRef]

A. Alu and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?”J. Nanophoton.4, 041590 (2010).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Quant. Spectrosc. Radiat. Transfer

X. Zambrana-Puyalto and G. Molina-Terriza, “The role of the angular momentum of light in mie scattering. excitation of dielectric spheres with laguerre-gaussian modes,” J. Quant. Spectrosc. Radiat. Transfer (2012).

Mater. Today

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

Nano Letters

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013).
[PubMed]

Nat. Commun.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk/’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

G. Molina-Terriza, “Determination of the total angular momentum of a paraxial beam,” Phys. Rev. A78, 053819 (2008).
[CrossRef]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A86, 042103 (2012).
[CrossRef]

Phys. Rev. B

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Phys. Rev. Lett.

K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013).
[CrossRef]

Proc. R. Soc. A

B. Richards and E. Wolf, “Electromagnetism Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A253, 358–379 (1959)
[CrossRef]

Proceedings of the Royal Society of London. Series A

P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proceedings of the Royal Society of London. Series A133, 60–72 (1931).
[CrossRef]

Other

W.-K. Tung, Group Theory in Physics(World Scientific, Singapore, 1985).

V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, Second Edition: Volume 4(Butterworth-Heinemann, 1982).

J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, New York, 1998).

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868 (2012).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983).

A. Messiah, Quantum Mechanics(Dover, New York, 1999).

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories(Springer, Berlin, 2011).
[CrossRef]

M. E. Rose, Multipole Fields(Wiley, New York, 1955).

L. Novotny and B. Hecht, Principles of nano-optics(Cambridge University Press, Cambdrige, MA, 2006).
[CrossRef]

H. van de Hulst, Light Scattering by Small Prticles(Wiley, New York, 1957).

F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer,” arXiv:physics/0410021 (2004).

E. Palik, Handbook of Optical Constants of Solids(Academic Press, 1985).

M. Bass, Handbook of Optics, 2nd ed. (McGraw-Hill, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Norm of the Mie coefficients |an| (in red) and |bn| (in blue) for n = 1, 10, 20 in a), b) and c), respectively as a function of the size parameter x = 2πr/λ. The relative index of refraction is nr = 1.5. It can be seen that all of them start being significantly different from zero when x ≈ 4n/5.

Fig. 2
Fig. 2

Plot of |a1b1| as a function of the radius of the sphere r (horizontal axis) and the relative index of refraction nr (vertical axis). It can be observed that there are three major regions where |a1b1| = 0. The wavelength is set to λ = 780nm.

Fig. 3
Fig. 3

Plot of the log of the Transfer function Tmzp (r, nr) for mz = 1 and p = 1, i.e. log(T11(r, nr)), as a function of the radius r of the particle (horizontal axis) and the relative index of refraction nr (vertical axis). The radius of the particle is varied from 100nm (left) to 300nm (right) and the relative index of refraction goes from 1.2 ≤ nr ≤ 3.

Fig. 4
Fig. 4

Multipolar decomposition (|Cjmzp|) for the two different incident beams used in this article. The function Cjmzp is normalized with the following relation: ∑j(2j + 1)|Cjmzp|2 = 1 [25]. The insets represent the intensity plots of the modes used for each simulation. The yellow coloured bars indicate NA=0.25, and the red ones NA=0.9. The multipolar decomposition of (a) Gaussian beam and (b) LG0,4 is presented. In both cases, the helicity is chosen to be p = 1. |Cjmzp| is plotted in the y axis and the multipolar order j is plotted in the x axis.

Fig. 5
Fig. 5

a) Plot of log(|a5b5|)) as a function of the radius r of the particle (horizontal axis) and the relative index of refraction nr (vertical axis). b) Plot of the log of the transfer function Tmzp(r, nr) for mz = 5 and p = 1, log (T51(r, nr)), as a function of r and nr.

Tables (1)

Tables Icon

Table 1 Wavelengths at which the dual condition is achieved depending on the AM of the incident beam. The bold wavelengths are those at which the dual condition could be achieved with the the range of wavelengths available in a Ti:Sap laser. The dual conditions are achieved with a minimum precision of Tmzp(r, nr) = 2% for the four different cases.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i = j = | m z | i j ( 2 j + 1 ) 1 / 2 C j m z p [ A j m z ( m ) + i p A j m z ( e ) ] E sca = j = | m z | i j ( 2 j + 1 ) 1 / 2 C j m z p [ b j A j m z ( m ) + i p a j A j m z ( e ) ] E int = j = | m z | i j ( 2 j + 1 ) 1 / 2 C j m z p [ c j A j m z ( m ) + i p d j A j m z ( e ) ]
w sca = j ( 2 j + 1 ) | C j m z p | 2 ( | a j | 2 + | b j | 2 )
w p sca = j ( 2 j + 1 ) | C j m z p | 2 | a j + b j | 2
w p sca = j ( 2 j + 1 ) | C j m z p | 2 | a j b j | 2
T m z p ( r , n r ) = w p sca w p sca = j = m z ( 2 j + 1 ) | C j m z p | 2 | a j b j | 2 j = m z ( 2 j + 1 ) | C j m z p | 2 | a j + b j | 2

Metrics