Abstract

Nyquist pulse shaping is a promising technique for high-speed optical fiber transmission. We experimentally demonstrate the generation and transmission of a 1.76Tb/s, polarization-division-multiplexing (PDM) 16 quadrature amplitude modulation (QAM) Nyquist pulse shaping super-channel over 714km standard single-mode fiber (SSMF) with Erbium-doped fiber amplifier (EDFA) only amplification. The superchannel consists of 40 subcarriers tightly spaced at 6.25GHz with a spectral efficiency of 7.06b/s/Hz. The experiment is successfully enabled with the modified single carrier frequency domain estimation and equalization (SCFDE) scheme by performing training sequence based channel estimation in frequency domain and subsequent channel equalization in time domain. After 714km transmission, the bit-error-rate (BER) of all subcarriers are lower than the forward error correction limit of 3.8 × 10−3.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhou, L. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450Gb/s per-channel WDM transmission on the 50GHz ITU-T grid,” J. Lightwave Technol.30(4), 553–559 (2012).
    [CrossRef]
  2. Z. Dong, X. Li, J. Yu, and N. Chi, “6×128-Gb/s Nyquist-WDM PDM-16QAM generation and transmission over 1200-km SMF-28 with SE of 7.47b/s/Hz,” J. Lightwave Technol.30(24), 4000–4005 (2012).
    [CrossRef]
  3. 3rd Generation Partnership Project, “Physical layer aspects for evolved universal terrestrial radio access(UTRA),” http://www.3gpp.org/ftp/Specs/html-info/25814.htm .
  4. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol.27(16), 3721–3728 (2009).
    [CrossRef]
  5. A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
    [CrossRef]
  6. C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08 Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express20(2), 787–793 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-787 .
    [CrossRef] [PubMed]
  7. X. Liu, S. Chandrasekhar, and B. Zhu, “Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000km of ULAF and five 80-GHz-Grid ROADMs,” in Proc. OFC, 2009, Paper PDPC2.
  8. S. Chandrasekhar, X. Liu, and B. Zhu, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in ECOC, 2009, Paper PDPC2.
  9. X. Zhou, J. Yu, M. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8b/s/Hz, PDM-36QAM transmission over 320km using both pre- and post-transmission digital signal processing,” J. Lightwave Technol.29(4), 571–577 (2011).
    [CrossRef]

2012 (3)

2011 (1)

2009 (1)

2007 (1)

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

Birk, M.

Borel, P. I.

Carlson, K.

Chen, Y.

Chen, Y.-K.

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

Chen, Z.

Chi, N.

Dong, Z.

Huang, M.

Isaac, R.

Ishihara, K.

Kaneda, N.

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

Kobayashi, T.

Koc, U.

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

Kudo, R.

Leven, A.

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

Li, J.

Li, X.

Lingle, R.

Magill, P.

Miyamoto, Y.

Nelson, L.

Peckham, D. W.

Sano, A.

Shao, Y.

Takatori, Y.

Wang, T.

Yu, J.

Zhang, F.

Zhang, S.

Zhao, C.

Zhou, X.

Zhu, B.

Zhu, L.

IEEE Photon. Technol. Lett. (1)

A. Leven, N. Kaneda, U. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett.19(6), 366–368 (2007).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Other (3)

X. Liu, S. Chandrasekhar, and B. Zhu, “Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000km of ULAF and five 80-GHz-Grid ROADMs,” in Proc. OFC, 2009, Paper PDPC2.

S. Chandrasekhar, X. Liu, and B. Zhu, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in ECOC, 2009, Paper PDPC2.

3rd Generation Partnership Project, “Physical layer aspects for evolved universal terrestrial radio access(UTRA),” http://www.3gpp.org/ftp/Specs/html-info/25814.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Generation of Nyquist pulse shaping signal. (b) Block diagrams of the receiver Offline DSP.

Fig. 2
Fig. 2

Block diagrams of (a) the conventional SCFDE, and (b) the modified SCFDE.

Fig. 3
Fig. 3

Experimental setup of Nyquist-SCFDE superchannel generation and transmission.

Fig. 4
Fig. 4

Frame structure of PDM-Nyquist SCFDE signals.

Fig. 5
Fig. 5

Optical spectra of (a)PDM 16-QAM Nyquist-SCFDE signal of back-to-back and after 238 km SSMF transmission; (b)the received optical signal after filtering.

Fig. 6
Fig. 6

Back-to-back BER performance

Fig. 7
Fig. 7

Measured BER of 37th subcarrier over 714km SSMF.

Fig. 8
Fig. 8

Measured BER for Nyquist pulse shaping superchannel over 714km SSMF

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C(k)= 1 H ˜ (k) = S tr (k) R tr (k) IDFT s tr (n)= r tr (n)c(l)
t 1 =( t x 0 ), t 2 =( 0 t y ), t x = t y .

Metrics