Abstract

Electric switching of reflection resonances at near-IR spectral range is experimentally demonstrated in a reflective metamaterial twisted nematic liquid crystal cell. Reflective metamaterial composed of nano-sized double-split ring resonator aperture is fabricated by a focused ion beam milling. Two-fold rotational symmetry of double-split ring resonators allows for two orthogonal polarization-dependent reflection resonances in the reflective metamaterial. With an external voltage of 10V across 12μm cell gap, a full switching is achieved between two reflection resonances. Dynamic measurements show the time constants of switch-on and switch-off are in the order of 100ms and 10ms, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11, 917–924 (2012).
    [CrossRef] [PubMed]
  2. B. Kang, J. H. Woo, E. Choi, H.-H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express18, 16492–16498 (2010).
    [CrossRef] [PubMed]
  3. O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express21, 1633–1638 (2013).
    [CrossRef] [PubMed]
  4. M. Decker, C. Kremers, A. Minovich, I. Staude, A. E. Miroshnichenko, D. Chigrin, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Electro-optical switching by liquid-crystal controlled metasurfaces,” Opt. Express21, 8879–8885 (2013).
    [CrossRef] [PubMed]
  5. J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
    [CrossRef]
  6. B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics(Wiley, 1991).
    [CrossRef]
  7. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation(Wiley, 1984).
  8. R. S. Elliott, Antenna Theory and Design, Revised ed. (IEEE, 2003).
    [CrossRef]
  9. K. Lu and B. E. Saleh, “Complex amplitude reflectance of the liquid crystal light valve,” Appl. Optics30, 2354–2362 (1991).
    [CrossRef]
  10. S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett.68, 1455–1457 (1996).
    [CrossRef]

2013 (3)

2012 (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11, 917–924 (2012).
[CrossRef] [PubMed]

2010 (1)

1996 (1)

S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett.68, 1455–1457 (1996).
[CrossRef]

1991 (1)

K. Lu and B. E. Saleh, “Complex amplitude reflectance of the liquid crystal light valve,” Appl. Optics30, 2354–2362 (1991).
[CrossRef]

Buchnev, O.

Chigrin, D.

Choi, E.

Choi, E. Y.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

Decker, M.

Elliott, R. S.

R. S. Elliott, Antenna Theory and Design, Revised ed. (IEEE, 2003).
[CrossRef]

Fedotov, V. A.

Gwon, M.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

Hwang, T.-J.

Jagadish, C.

Kaczmarek, M.

Kang, B.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

B. Kang, J. H. Woo, E. Choi, H.-H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express18, 16492–16498 (2010).
[CrossRef] [PubMed]

Kim, D. H.

Kim, D.-W.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

Kim, E. S.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

B. Kang, J. H. Woo, E. Choi, H.-H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express18, 16492–16498 (2010).
[CrossRef] [PubMed]

Kim, J.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

B. Kang, J. H. Woo, E. Choi, H.-H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express18, 16492–16498 (2010).
[CrossRef] [PubMed]

Kivshar, Y. S.

Kremers, C.

Lee, H.-H.

Lee, Y. U.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

Lu, K.

K. Lu and B. E. Saleh, “Complex amplitude reflectance of the liquid crystal light valve,” Appl. Optics30, 2354–2362 (1991).
[CrossRef]

Minovich, A.

Miroshnichenko, A. E.

Neshev, D. N.

Ou, J. Y.

Park, Y.-S.

Saleh, B. E.

K. Lu and B. E. Saleh, “Complex amplitude reflectance of the liquid crystal light valve,” Appl. Optics30, 2354–2362 (1991).
[CrossRef]

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics(Wiley, 1991).
[CrossRef]

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics(Wiley, 1991).
[CrossRef]

Staude, I.

Teich, M. C.

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics(Wiley, 1991).
[CrossRef]

Woo, J. H.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

B. Kang, J. H. Woo, E. Choi, H.-H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express18, 16492–16498 (2010).
[CrossRef] [PubMed]

Wu, C.-S.

S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett.68, 1455–1457 (1996).
[CrossRef]

Wu, J. W.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

B. Kang, J. H. Woo, E. Choi, H.-H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express18, 16492–16498 (2010).
[CrossRef] [PubMed]

Wu, S.-T.

S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett.68, 1455–1457 (1996).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation(Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation(Wiley, 1984).

Zheludev, N. I.

Appl. Optics (1)

K. Lu and B. E. Saleh, “Complex amplitude reflectance of the liquid crystal light valve,” Appl. Optics30, 2354–2362 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett.68, 1455–1457 (1996).
[CrossRef]

Nanotechnology (1)

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology24, 015306 (2013).
[CrossRef]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11, 917–924 (2012).
[CrossRef] [PubMed]

Opt. Express (3)

Other (3)

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics(Wiley, 1991).
[CrossRef]

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation(Wiley, 1984).

R. S. Elliott, Antenna Theory and Design, Revised ed. (IEEE, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of a reflective metamaterial twisted mematics cell are shown, when (a) no external voltage is applied and (b) an AC voltage is applied. Vertical polarization of an incident beam experiences different reflective resonances upon reflecting from the metamaterial bottom alignment layer.

Fig. 2
Fig. 2

(a) Schematics of metamaterial with nano-sized double-split ring resonator apertures is shown. (b) FDTD simulated reflection spectrum is shown. (c) SEM image of metamate-rials fabricated by an FIB milling is shown. (d) Measured reflection spectrum of metamate-rial is shown. Red and black curves correspond to the spectrum for horizontal and vertical polarizations of a linearly polarized incident beam, respectively.

Fig. 3
Fig. 3

(a) Theoretical reflection intensity is plotted as a function of the phase retardation Γ. (b) Experimental measurement of the voltage dependence of reflection intensity in a generic twisted nematic liquid crystal cell, i.e., a control sample, is shown. Red curve corresponds to the theoretical reflection intensity as a function of the external voltage for the control sample.

Fig. 4
Fig. 4

(a) Reflection spectrum of the reflective metamaterial twisted nematic liquid crystal cell is shown for a vertically polarized incident beam in the absence (red curve) and presence (black curve) of an external voltage. (b) Changes in the reflected intensity are plotted as a function of the external voltage at wavelengths 700nm (gray square) and 1010nm (blue triangle). See text for the description of ①, ②, ③, and ④.

Fig. 5
Fig. 5

Three dimensional plots of reflection spectra are shown as a function of the external voltage for a vertically polarized incident beam.

Fig. 6
Fig. 6

Oscilloscope traces are shown in the measurement of switch-on and switch-off time in (a) the reference sample and (b) the reflective metamaterial twisted nematics cell.

Metrics