Abstract

We revisit representative and widely used inverse-scattering fiber Bragg grating designs and shed physical insight into their characteristics. We first demonstrate numerically and experimentally that dispersionless square filters are actually dispersion compensated devices and we physically identify the spatially separated main (dispersive) reflector and dispersion compensator sections. We also look into the features of pure 2nd-order dispersion and 3rd-order dispersion compensator designs and discuss their physical importance. Finally, we use the gained physical insight to design strong symmetric gratings with dispersionless response from both sides. Using this knowledge we design and fabricate strong (>30dB) bidirectional dispersionless filters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
    [CrossRef]
  2. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15(8), 1391–1404 (1997).
    [CrossRef]
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House Inc. (1999).
  4. R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
    [CrossRef]
  5. Y. Painchaud, M. Lapointe, F. Trépanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent Progress on FBG-Based Tunable Dispersion Compensators for 40 Gb/s Applications,” Proc. Optical Fiber Commun./National Fiber Optic Engineers Conf. (OFC/NFOEC ‘07) (Anaheim, CA, 2007), paper OThP3.
    [CrossRef]
  6. T. Schmidt, C. Malouin, R. Saunders, J. Hong, and R. Marcoccia, “Mitigating channel impairments in high capacity serial 40G and 100G DWDM transmission systems,” IEEE/LEOS Summer Topical Meetings, ME2.2, 141–142 (2008).
  7. G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
    [CrossRef]
  8. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66(9), 1053–1055 (1995).
    [CrossRef]
  9. R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser,” Opt. Lett.36(5), 609–611 (2011).
    [CrossRef] [PubMed]
  10. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Coherence length extension of Fourier domain mode locked lasers,” Proc. SPIE8213, 82130O, 82130O-4 (2012).
    [CrossRef]
  11. M. Ibsen, R. Feced, P. C. Teh, J. H. Lee, M. R. Mokhtar, P. Petropoulos, M. N. Zervas, D. J. Richardson, and D. N. Payne, “Advanced Bragg grating devices and where they are going,” Proc. 27th Australian Conference on Optical Fibre Technology (ACOFT), 89–91 Sydney (2002).
  12. M. Ibsen and R. Feced, “Fiber Bragg gratings for pure dispersion-slope compensation,” Opt. Lett.28(12), 980–982 (2003).
    [CrossRef] [PubMed]
  13. H. A. Haus, J. D. Moores, and L. E. Nelson, “Effect of third-order dispersion on passive mode locking,” Opt. Lett.18(1), 51–53 (1993).
    [CrossRef] [PubMed]
  14. M. L. Dennis and I. N. Duling, “Third-order dispersion in femtosecond fiber lasers,” Opt. Lett.19(21), 1750–1752 (1994).
    [CrossRef] [PubMed]
  15. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett.14(15), 823–825 (1989).
    [CrossRef] [PubMed]
  16. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett.28(12), 995–997 (2003).
    [CrossRef] [PubMed]
  17. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J.55, 109–126 (1976).
  18. P. St. J. Russell, T. A. Birks, and F. D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons, E. Burnstein, C. Weisbuch (Eds), 585–633, Plenum (1995).
  19. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
    [CrossRef]
  20. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt.26(16), 3474–3478 (1987).
    [CrossRef] [PubMed]
  21. P. S. Cross and H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filters,” Opt. Lett.1(1), 43–45 (1977).
    [CrossRef] [PubMed]
  22. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron.34(5), 770–778 (1998).
    [CrossRef]
  23. K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier-transform techniques,” IEEE J. Quantum Electron.26(11), 1918–1929 (1990).
    [CrossRef]
  24. G. L. Lamb, Jr., “Elements of soliton theory,” New York: Wiley (1980).
  25. A. M. Bruckstein, B. C. Levy, and T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math.45(2), 312–335 (1985).
    [CrossRef]
  26. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
    [CrossRef]
  27. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” J. Quantum Electron.37(2), 165–173 (2001).
    [CrossRef]
  28. A. Rosenthal and M. Horowitz, “New technique to accurately interpolate the complex reflection spectrum of fiber Bragg gratings,” IEEE J. Quantum Electron.40(8), 1099–1104 (2004).
    [CrossRef]
  29. L. Huang, W. Huang, J. Wang, and G. Yang, “Improved layer peeling algorithm for strongly reflecting fiber gratings,” Chin. Opt. Lett.4, 505–507 (2006).
  30. M. Ibsen, R. Feced, P. Petropoulos, and M.N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Proceedings of Optical Fiber Communications Conference, paper PD21 (2002).
  31. K. H. Ylä-Jarkko, M. N. Zervas, M. K. Durkin, I. Barry, and A. B. Grudinin, “Power Penalties Due to In-Band and Out-of-Band Dispersion in FBG Cascades,” J. Lightwave Technol.21(2), 506–510 (2003).
    [CrossRef]
  32. M. K. Durkin and M. N. Zervas, “Apparatus for filtering optical radiation at an operating wavelength,” Patent No: US6,947,641 (2005).
  33. P. Minzioni and M. Tormen, “Bragg gratings: Impact of apodization lobes and design of a dispersionless optical filter,” J. Lightwave Technol.24(1), 605–611 (2006).
    [CrossRef]
  34. M. N. Zervas and M. K. Durkin, “Physical insight into dispersionless FBG designs,” in Bragg Gratings, Photosensitivity, and Poling (BGPP) in Glass Waveguides, paper BM3D.6, Colorado (2012).
  35. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
    [CrossRef]
  36. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett.20(20), 2051–2053 (1995).
    [CrossRef] [PubMed]
  37. C. Riziotis and M. N. Zervas, “Effect of in-band group delay ripple on WDM filter performance,” 27th European Conf. Opt. Commun.4, 492–493 (2001) (ECOC).
  38. M. Sumetsky, B. J. Eggleton, and C. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express10(7), 332–340 (2002).
    [CrossRef] [PubMed]
  39. M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems”, Optical Fiber Communications Conf.1, 121–123 (2000).
    [CrossRef]
  40. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett.10(10), 1476–1478 (1998).
    [CrossRef]
  41. F. Knappe, H. Renner, and E. Brinkmeyer, “Efficient design of spatially symmetric Bragg gratings for add/drop multiplexers,” AEU Int. J. Electron. Commun.62(7), 513–520 (2008) (AEÜ).
    [CrossRef]
  42. A. V. Nemykin and D. A. Shapiro, “Optical FBG filter with minimum group delay for WDM systems,” Opt. Commun.289, 97–102 (2013).
    [CrossRef]

2013 (1)

A. V. Nemykin and D. A. Shapiro, “Optical FBG filter with minimum group delay for WDM systems,” Opt. Commun.289, 97–102 (2013).
[CrossRef]

2012 (1)

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Coherence length extension of Fourier domain mode locked lasers,” Proc. SPIE8213, 82130O, 82130O-4 (2012).
[CrossRef]

2011 (1)

2010 (1)

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

2008 (1)

F. Knappe, H. Renner, and E. Brinkmeyer, “Efficient design of spatially symmetric Bragg gratings for add/drop multiplexers,” AEU Int. J. Electron. Commun.62(7), 513–520 (2008) (AEÜ).
[CrossRef]

2006 (2)

2004 (1)

A. Rosenthal and M. Horowitz, “New technique to accurately interpolate the complex reflection spectrum of fiber Bragg gratings,” IEEE J. Quantum Electron.40(8), 1099–1104 (2004).
[CrossRef]

2003 (3)

2002 (1)

2001 (2)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

C. Riziotis and M. N. Zervas, “Effect of in-band group delay ripple on WDM filter performance,” 27th European Conf. Opt. Commun.4, 492–493 (2001) (ECOC).

1999 (1)

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

1998 (2)

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett.10(10), 1476–1478 (1998).
[CrossRef]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron.34(5), 770–778 (1998).
[CrossRef]

1997 (1)

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15(8), 1391–1404 (1997).
[CrossRef]

1996 (1)

R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
[CrossRef]

1995 (3)

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66(9), 1053–1055 (1995).
[CrossRef]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett.20(20), 2051–2053 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

1990 (1)

K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier-transform techniques,” IEEE J. Quantum Electron.26(11), 1918–1929 (1990).
[CrossRef]

1989 (1)

1987 (1)

1985 (1)

A. M. Bruckstein, B. C. Levy, and T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math.45(2), 312–335 (1985).
[CrossRef]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

1977 (1)

1976 (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J.55, 109–126 (1976).

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

Adamiecki, A.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Adler, D. C.

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Coherence length extension of Fourier domain mode locked lasers,” Proc. SPIE8213, 82130O, 82130O-4 (2012).
[CrossRef]

Barcelos, S.

R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett.20(20), 2051–2053 (1995).
[CrossRef] [PubMed]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

Barry, I.

Basch, E. B.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Bennion, I.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66(9), 1053–1055 (1995).
[CrossRef]

Brinkmeyer, E.

F. Knappe, H. Renner, and E. Brinkmeyer, “Efficient design of spatially symmetric Bragg gratings for add/drop multiplexers,” AEU Int. J. Electron. Commun.62(7), 513–520 (2008) (AEÜ).
[CrossRef]

Bruckstein, A. M.

A. M. Bruckstein, B. C. Levy, and T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math.45(2), 312–335 (1985).
[CrossRef]

Buhl, L. L.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Carenza, A.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Cole, M. J.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett.20(20), 2051–2053 (1995).
[CrossRef] [PubMed]

Corteselli, S.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Cross, P. S.

de Sterke, C.

Denkin, N. M.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Dennis, M. L.

Ding, H.

Doerr, C. R.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Downs, T. L.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Duling, I. N.

Durkin, M.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett.10(10), 1476–1478 (1998).
[CrossRef]

Durkin, M. K.

K. H. Ylä-Jarkko, M. N. Zervas, M. K. Durkin, I. Barry, and A. B. Grudinin, “Power Penalties Due to In-Band and Out-of-Band Dispersion in FBG Cascades,” J. Lightwave Technol.21(2), 506–510 (2003).
[CrossRef]

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems”, Optical Fiber Communications Conf.1, 121–123 (2000).
[CrossRef]

Eggleton, B. J.

Ennser, K.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron.34(5), 770–778 (1998).
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett.10(10), 1476–1478 (1998).
[CrossRef]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Feced, R.

M. Ibsen and R. Feced, “Fiber Bragg gratings for pure dispersion-slope compensation,” Opt. Lett.28(12), 980–982 (2003).
[CrossRef] [PubMed]

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems”, Optical Fiber Communications Conf.1, 121–123 (2000).
[CrossRef]

Fermann, M. E.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66(9), 1053–1055 (1995).
[CrossRef]

Fishman, D. A.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Fisk, T. T.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66(9), 1053–1055 (1995).
[CrossRef]

Gatewood, J. R.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15(8), 1391–1404 (1997).
[CrossRef]

Glenn, W. H.

Gnauck, A. H.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Goode, E. H.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Grobnic, D.

Grudinin, A. B.

Gumenyuk, R.

Harter, D.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66(9), 1053–1055 (1995).
[CrossRef]

Haus, H. A.

Henderson, G.

Higuma, K.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Hofmann, P.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Horowitz, M.

A. Rosenthal and M. Horowitz, “New technique to accurately interpolate the complex reflection spectrum of fiber Bragg gratings,” IEEE J. Quantum Electron.40(8), 1099–1104 (2004).
[CrossRef]

Huang, L.

Huang, W.

Huber, R. A.

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Coherence length extension of Fourier domain mode locked lasers,” Proc. SPIE8213, 82130O, 82130O-4 (2012).
[CrossRef]

Ibsen, M.

M. Ibsen and R. Feced, “Fiber Bragg gratings for pure dispersion-slope compensation,” Opt. Lett.28(12), 980–982 (2003).
[CrossRef] [PubMed]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett.10(10), 1476–1478 (1998).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Kailath, T.

A. M. Bruckstein, B. C. Levy, and T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math.45(2), 312–335 (1985).
[CrossRef]

Kao, Y.-H.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Kawanishi, T.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Kissell, T.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Kluge, W. J.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Knappe, F.

F. Knappe, H. Renner, and E. Brinkmeyer, “Efficient design of spatially symmetric Bragg gratings for add/drop multiplexers,” AEU Int. J. Electron. Commun.62(7), 513–520 (2008) (AEÜ).
[CrossRef]

Kogelnik, H.

P. S. Cross and H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filters,” Opt. Lett.1(1), 43–45 (1977).
[CrossRef] [PubMed]

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J.55, 109–126 (1976).

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

Laming, R. I.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett.10(10), 1476–1478 (1998).
[CrossRef]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron.34(5), 770–778 (1998).
[CrossRef]

R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett.20(20), 2051–2053 (1995).
[CrossRef] [PubMed]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

Lee, W.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Levy, B. C.

A. M. Bruckstein, B. C. Levy, and T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math.45(2), 312–335 (1985).
[CrossRef]

Loh, W. H.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett.20(20), 2051–2053 (1995).
[CrossRef] [PubMed]

Lu, P.

Lyons, G.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Meltz, G.

Mihailov, S. J.

Minzioni, P.

Moores, J. D.

Morey, W. W.

Muriel, M. A.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

Nelson, L. E.

Nemykin, A. V.

A. V. Nemykin and D. A. Shapiro, “Optical FBG filter with minimum group delay for WDM systems,” Opt. Commun.289, 97–102 (2013).
[CrossRef]

Okhotnikov, O. G.

Painchaud, Y.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Ramirez, C.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems”, Optical Fiber Communications Conf.1, 121–123 (2000).
[CrossRef]

Raybon, G.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Reekie, L.

R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
[CrossRef]

Renner, H.

F. Knappe, H. Renner, and E. Brinkmeyer, “Efficient design of spatially symmetric Bragg gratings for add/drop multiplexers,” AEU Int. J. Electron. Commun.62(7), 513–520 (2008) (AEÜ).
[CrossRef]

Riziotis, C.

C. Riziotis and M. N. Zervas, “Effect of in-band group delay ripple on WDM filter performance,” 27th European Conf. Opt. Commun.4, 492–493 (2001) (ECOC).

Robinson, N.

R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
[CrossRef]

Roman, J. E.

K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier-transform techniques,” IEEE J. Quantum Electron.26(11), 1918–1929 (1990).
[CrossRef]

Rosenthal, A.

A. Rosenthal and M. Horowitz, “New technique to accurately interpolate the complex reflection spectrum of fiber Bragg gratings,” IEEE J. Quantum Electron.40(8), 1099–1104 (2004).
[CrossRef]

Sakuda, K.

Schmitt, J. M.

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Coherence length extension of Fourier domain mode locked lasers,” Proc. SPIE8213, 82130O, 82130O-4 (2012).
[CrossRef]

Scrivener, P. L.

R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
[CrossRef]

Scrudato, S.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

Shapiro, D. A.

A. V. Nemykin and D. A. Shapiro, “Optical FBG filter with minimum group delay for WDM systems,” Opt. Commun.289, 97–102 (2013).
[CrossRef]

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Smelser, C. W.

Song, H.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Sugden, K.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66(9), 1053–1055 (1995).
[CrossRef]

Sumetsky, M.

Thompson, W. A.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Tormen, M.

Trepanier, F.

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Coherence length extension of Fourier domain mode locked lasers,” Proc. SPIE8213, 82130O, 82130O-4 (2012).
[CrossRef]

Tucknott, J. A.

R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
[CrossRef]

Tuovinen, H.

Unruh, J.

Vartiainen, I.

Walker, R. B.

Wang, J.

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Wellbrock, G.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Wieser, W.

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Coherence length extension of Fourier domain mode locked lasers,” Proc. SPIE8213, 82130O, 82130O-4 (2012).
[CrossRef]

Winick, K. A.

K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier-transform techniques,” IEEE J. Quantum Electron.26(11), 1918–1929 (1990).
[CrossRef]

Winzer, P. J.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Xia, T.

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Yamada, M.

Yang, G.

Ylä-Jarkko, K. H.

Zervas, M. N.

K. H. Ylä-Jarkko, M. N. Zervas, M. K. Durkin, I. Barry, and A. B. Grudinin, “Power Penalties Due to In-Band and Out-of-Band Dispersion in FBG Cascades,” J. Lightwave Technol.21(2), 506–510 (2003).
[CrossRef]

C. Riziotis and M. N. Zervas, “Effect of in-band group delay ripple on WDM filter performance,” 27th European Conf. Opt. Commun.4, 492–493 (2001) (ECOC).

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron.34(5), 770–778 (1998).
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett.10(10), 1476–1478 (1998).
[CrossRef]

R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
[CrossRef]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett.20(20), 2051–2053 (1995).
[CrossRef] [PubMed]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems”, Optical Fiber Communications Conf.1, 121–123 (2000).
[CrossRef]

27th European Conf. Opt. Commun. (1)

C. Riziotis and M. N. Zervas, “Effect of in-band group delay ripple on WDM filter performance,” 27th European Conf. Opt. Commun.4, 492–493 (2001) (ECOC).

AEU Int. J. Electron. Commun. (1)

F. Knappe, H. Renner, and E. Brinkmeyer, “Efficient design of spatially symmetric Bragg gratings for add/drop multiplexers,” AEU Int. J. Electron. Commun.62(7), 513–520 (2008) (AEÜ).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66(9), 1053–1055 (1995).
[CrossRef]

Bell Lab. Tech. J. (1)

G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J.55, 109–126 (1976).

Chin. Opt. Lett. (1)

Electron. Lett. (1)

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995).
[CrossRef]

IEEE J. Quantum Electron. (4)

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron.34(5), 770–778 (1998).
[CrossRef]

K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier-transform techniques,” IEEE J. Quantum Electron.26(11), 1918–1929 (1990).
[CrossRef]

A. Rosenthal and M. Horowitz, “New technique to accurately interpolate the complex reflection spectrum of fiber Bragg gratings,” IEEE J. Quantum Electron.40(8), 1099–1104 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996).
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett.10(10), 1476–1478 (1998).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

J. Lightwave Technol. (3)

J. Quantum Electron. (1)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Opt. Commun. (1)

A. V. Nemykin and D. A. Shapiro, “Optical FBG filter with minimum group delay for WDM systems,” Opt. Commun.289, 97–102 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Proc. SPIE (1)

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Coherence length extension of Fourier domain mode locked lasers,” Proc. SPIE8213, 82130O, 82130O-4 (2012).
[CrossRef]

SIAM J. Appl. Math. (1)

A. M. Bruckstein, B. C. Levy, and T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math.45(2), 312–335 (1985).
[CrossRef]

Other (10)

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems”, Optical Fiber Communications Conf.1, 121–123 (2000).
[CrossRef]

M. Ibsen, R. Feced, P. C. Teh, J. H. Lee, M. R. Mokhtar, P. Petropoulos, M. N. Zervas, D. J. Richardson, and D. N. Payne, “Advanced Bragg grating devices and where they are going,” Proc. 27th Australian Conference on Optical Fibre Technology (ACOFT), 89–91 Sydney (2002).

P. St. J. Russell, T. A. Birks, and F. D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons, E. Burnstein, C. Weisbuch (Eds), 585–633, Plenum (1995).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House Inc. (1999).

Y. Painchaud, M. Lapointe, F. Trépanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent Progress on FBG-Based Tunable Dispersion Compensators for 40 Gb/s Applications,” Proc. Optical Fiber Commun./National Fiber Optic Engineers Conf. (OFC/NFOEC ‘07) (Anaheim, CA, 2007), paper OThP3.
[CrossRef]

T. Schmidt, C. Malouin, R. Saunders, J. Hong, and R. Marcoccia, “Mitigating channel impairments in high capacity serial 40G and 100G DWDM transmission systems,” IEEE/LEOS Summer Topical Meetings, ME2.2, 141–142 (2008).

G. L. Lamb, Jr., “Elements of soliton theory,” New York: Wiley (1980).

M. Ibsen, R. Feced, P. Petropoulos, and M.N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Proceedings of Optical Fiber Communications Conference, paper PD21 (2002).

M. K. Durkin and M. N. Zervas, “Apparatus for filtering optical radiation at an operating wavelength,” Patent No: US6,947,641 (2005).

M. N. Zervas and M. K. Durkin, “Physical insight into dispersionless FBG designs,” in Bragg Gratings, Photosensitivity, and Poling (BGPP) in Glass Waveguides, paper BM3D.6, Colorado (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

General FBG analysis and synthesis schematic

Fig. 2
Fig. 2

Dispersionless FBG characteristics: (a) Coupling constant (b) reflectivity & transmissivity and (c) reflection (left & right) and transmission group delays, (d) coupling constant (log scale) for varying reflectivity.

Fig. 3
Fig. 3

Dispersionless IS FBG design (a) full coupling constant distribution (regions I + II + III), (b) truncated profiles II + III and (c) central lobe II. (d)-(f) show the corresponding transmissivities, reflectivities and group delays.

Fig. 4
Fig. 4

Inverse scattering dispersionless FBGs; Reflectivity and Group Delay spectra for (a)&(b) main reflector (sections II + III), (c)&(d) dispersion compensator (section I) and (e)&(f) entire grating (I + II + III), (blue lines: theory, red lines: experiment).

Fig. 5
Fig. 5

Reflectivity and group-delay spectrum of a 2nd-order dispersion compensating FBG (R0 = 0.99, Δλ0 = 0.6nm, m = 120 and D2 = 1500ps/nm), (b apodization profile (coupling constant) and chirp (local detuning) of the layer-peeling IS design, (c) apodization profile (coupling constant) and local period detuning (chirp) distributions of a conventional, linearly-chirped FBG. The FBG total length is 18cm and the applied local period detuning is 0.2nm. The apodization profile is a super-gaussian function with exponent m = 120, L0 = 18cm and maximum coupling constant of 172m−1, (d) reflectivity and group-delay spectra of the grating.

Fig. 6
Fig. 6

(a) Coupling constant (left) and local period detuning (right) obtained with the layer-peeling IS technique, for R0 = 0.9, Δλ0 = 0.4nm, m = 22 and D2 = −1100ps/nm. Theoretical and experimental (b) reflectivity spectra, (c) group delay and (d) group delay ripple (superimposed is also the reflectivity of a conventional tahn-apodized, linearly-chirped FBG with comparable reflectivity and dispersion).

Fig. 7
Fig. 7

(a) Reflectivity (left) and the corresponding group delay (right), for R0 = 0.9, Δλ0 = 5nm, m = 20 and D3 = −20ps/nm2, (b) coupling constant distribution along the fiber length obtained by the layer-peeling IS approach.

Fig. 8
Fig. 8

Position (group delay) and local period (wavelength) interrelation schematics for (a) even-order and (b) 3rd-order DC designs.

Fig. 9
Fig. 9

(a) Unidirectional asymmetric design obtained by application of layer-peeling IS algorithm, (b) bidirectional symmetric design obtained by replacing section III by section I. (c) reflectivity and transmissivity of the symmetric (solid lines) and original asymmetric (dashed lines) designs. (d) group delays in reflection (both sides) and transmission for the symmetric design.

Fig. 10
Fig. 10

Dispersionless bidirectional FBG (a) normalized coupling constant profile (red line) and sinc profile (blue line) ((b) reflectivity (design – green & experiment - red) and (c) time delay from front (red), back (blue) sides and design (green).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n(z)= n 0 +Δn(z)cos[ K 0 z+φ(z) ]
ΔΛ(z)= Λ 0 2 2π dφ dz
q(z)= q 0 (z) e iφ(z)
r(λ)= r 0 (λ) e iθ(λ)
Δτ(λ)= θ ω = n 0 λ 0 2 2πc dθ dλ
r(Δλ)= R 0 exp[ ( 2 Δλ Δ λ 0 ) 2m ]exp[ +iΔθ(λ) ]
θ(Δλ)= 2πc λ 0 2 Δτ(λ) dΔλ
Δτ(Δλ)=Δ τ ref + D 2 Δλ+ D 3 Δ λ 2
Δ τ ref = n 0 L 0 /c

Metrics