Abstract

We propose a novel plasmonic waveguide structure, which is referred to as a circular hybrid plasmonic waveguide (HPW) and consists of a metal wire covered with low- and high-index dielectric layers. The circular HPW exhibits two distinctly different modes, namely, the strongly localized mode and the extremely low-loss mode. Our numerical calculation demonstrates that the strongly localized mode exhibits 10−4 order scale in normalized mode area and can be performed even in tens of nanometer sizes of waveguide geometry. In the extremely low-loss mode, the HPW exhibits ultra-long propagation distance of more than 103μm that can be achieved by forming the dipole-like hybrid mode and properly adjusting the radius of the metal wire. It is also shown that, even with this long-range propagation, the mode area of the dipole-like hybrid mode can be maintained at subwavelength scale. The simultaneous achievement of a small mode area and ultra-long propagation distance contributes to the ultra-high propagation distance to mode size ratio of the waveguide. The HPW results are very helpful for plasmonic device applications in the fields of low-threshold nanolasers, ultrafast modulators, and optical switches.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
    [CrossRef] [PubMed]
  2. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010).
    [CrossRef]
  3. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
    [CrossRef]
  4. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express17(13), 11045–11056 (2009).
    [CrossRef] [PubMed]
  5. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
    [CrossRef]
  6. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
    [CrossRef]
  7. L. Y. M. Tobing, L. Tjahjana, and D. H. Zhang, “Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on silicon-on-insulator platform,” Appl. Phys. Lett.101(4), 041117 (2012).
    [CrossRef]
  8. J. H. Kang, Y. S. No, S. H. Kwon, and H. G. Park, “Ultrasmall subwavelength nanorod plasmonic cavity,” Opt. Lett.36(11), 2011–2013 (2011).
    [CrossRef] [PubMed]
  9. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  11. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  12. V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science333(6043), 709–710 (2011).
    [CrossRef] [PubMed]
  13. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
    [CrossRef]
  14. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
    [CrossRef] [PubMed]
  15. S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
    [CrossRef] [PubMed]
  16. V. J. Sorger, N. D. L. Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
    [CrossRef]
  17. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express20(8), 8700–8709 (2012).
    [CrossRef] [PubMed]
  18. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
    [CrossRef] [PubMed]
  19. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express19(2), 838–847 (2011).
    [CrossRef] [PubMed]
  20. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012).
    [CrossRef] [PubMed]
  21. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006).
    [CrossRef] [PubMed]
  22. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012).
    [CrossRef] [PubMed]
  23. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011).
    [CrossRef] [PubMed]
  24. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010).
    [CrossRef] [PubMed]
  25. T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett.89(23), 233119 (2006).
    [CrossRef]
  26. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
    [CrossRef]
  27. R. Hao, E. Li, and X. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett.37(14), 2934–2936 (2012).
    [CrossRef] [PubMed]
  28. S. Lee and S. Kim, “Plasmonic mode-gap waveguides using hetero-metal films,” Opt. Express18(3), 2197–2208 (2010).
    [CrossRef] [PubMed]

2012 (7)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

L. Y. M. Tobing, L. Tjahjana, and D. H. Zhang, “Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on silicon-on-insulator platform,” Appl. Phys. Lett.101(4), 041117 (2012).
[CrossRef]

V. J. Sorger, N. D. L. Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express20(8), 8700–8709 (2012).
[CrossRef] [PubMed]

L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012).
[CrossRef] [PubMed]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012).
[CrossRef] [PubMed]

R. Hao, E. Li, and X. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett.37(14), 2934–2936 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (6)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010).
[CrossRef]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
[CrossRef]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
[CrossRef] [PubMed]

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010).
[CrossRef] [PubMed]

S. Lee and S. Kim, “Plasmonic mode-gap waveguides using hetero-metal films,” Opt. Express18(3), 2197–2208 (2010).
[CrossRef] [PubMed]

2009 (4)

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express17(13), 11045–11056 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

2007 (1)

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

2006 (3)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett.89(23), 233119 (2006).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010).
[CrossRef]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Avrutsky, I.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Buchwald, W.

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Dai, D.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Diest, K.

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express20(8), 8700–8709 (2012).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Eijkemans, T. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Elezzabi, A. Y.

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Gao, L.

Geluk, E. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Girard, C.

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett.89(23), 233119 (2006).
[CrossRef]

Guan, X.

Guo, R.

Han, Z.

Hao, R.

He, S.

He, Y.

Hill, M. T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Holmström, P.

Hu, F.

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010).
[CrossRef]

Kang, J. H.

J. H. Kang, Y. S. No, S. H. Kwon, and H. G. Park, “Ultrasmall subwavelength nanorod plasmonic cavity,” Opt. Lett.36(11), 2011–2013 (2011).
[CrossRef] [PubMed]

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Kim, S.

Kim, S. K.

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Kimura, N. D. L.

V. J. Sorger, N. D. L. Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010).
[CrossRef]

Kwon, S. H.

J. H. Kang, Y. S. No, S. H. Kwon, and H. G. Park, “Ultrasmall subwavelength nanorod plasmonic cavity,” Opt. Lett.36(11), 2011–2013 (2011).
[CrossRef] [PubMed]

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Lakhani, A.

Laroche, T.

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett.89(23), 233119 (2006).
[CrossRef]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Lee, S.

Lee, Y. H.

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Lezec, H. J.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Li, E.

Lieber, C. M.

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Lou, F.

Ma, R. M.

V. J. Sorger, N. D. L. Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

No, Y. S.

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010).
[CrossRef]

Notzel, R.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Oei, Y. S.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010).
[CrossRef]

Otten, F. W. M. V.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Park, H. G.

J. H. Kang, Y. S. No, S. H. Kwon, and H. G. Park, “Ultrasmall subwavelength nanorod plasmonic cavity,” Opt. Lett.36(11), 2011–2013 (2011).
[CrossRef] [PubMed]

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Regreny, P.

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Seassal, C.

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Sederberg, S.

Shi, Y.

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Smalbrugge, B.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Soref, R.

Sorger, V. J.

V. J. Sorger, N. D. L. Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science333(6043), 709–710 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
[CrossRef]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Sweatlock, L. A.

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express20(8), 8700–8709 (2012).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Tang, L.

Thylen, L.

Tjahjana, L.

L. Y. M. Tobing, L. Tjahjana, and D. H. Zhang, “Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on silicon-on-insulator platform,” Appl. Phys. Lett.101(4), 041117 (2012).
[CrossRef]

Tobing, L. Y. M.

L. Y. M. Tobing, L. Tjahjana, and D. H. Zhang, “Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on silicon-on-insulator platform,” Appl. Phys. Lett.101(4), 041117 (2012).
[CrossRef]

Turkiewicz, J. P.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Van, V.

Veldhoven, P. J. V.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Vries, T. D.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Waardt, H. D.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Wang, J.

Wang, X.

Wang, Z.

Wei, X.

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Wosinski, L.

Wu, M. C.

Yu, K.

Zhang, D. H.

L. Y. M. Tobing, L. Tjahjana, and D. H. Zhang, “Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on silicon-on-insulator platform,” Appl. Phys. Lett.101(4), 041117 (2012).
[CrossRef]

Zhang, X.

V. J. Sorger, N. D. L. Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science333(6043), 709–710 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Zhou, Z.

Zhu, Y.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

L. Y. M. Tobing, L. Tjahjana, and D. H. Zhang, “Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on silicon-on-insulator platform,” Appl. Phys. Lett.101(4), 041117 (2012).
[CrossRef]

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett.89(23), 233119 (2006).
[CrossRef]

J. Opt. (1)

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
[CrossRef]

Nano Lett. (4)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Nanophotonics (1)

V. J. Sorger, N. D. L. Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

Nat. Photonics (3)

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Nat. Phys. (1)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010).
[CrossRef]

Nature (2)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (8)

Opt. Lett. (3)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Science (1)

V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science333(6043), 709–710 (2011).
[CrossRef] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Various plasmonic waveguide structures. (a) A single interface plasmonic waveguide. The most fundamental plasmonic waveguide. (b) A planar HPW. A low-index dielectric is inserted in between a metal and high-index dielectric medium. (c) A metal wire waveguide. The metal wire surrounded by air. (d) A dielectric wire HPW. Two-dimensional modal confinement is accomplished in this structure. (e) A circular HPW, The metal wire is covered with low- and high-index dielectric layers.

Fig. 2
Fig. 2

Modal characteristics of the 1st mode in the circular HPW. (a) Electric field profile at the smallest mode area, where r = 10 nm, tlow = 1 nm, and thigh = 55 nm. The arrows indicate the polarization directions. (b) Normalized mode area, (c) propagation distance, and (d) propagation distance to mode size ratio as a function of thigh.

Fig. 3
Fig. 3

Modal characteristics of the 2nd mode in the circular HPW. Electric field profiles for (a) tlow = 5 nm, thigh = 130 nm, (b) tlow = 5 nm, thigh = 170 nm, (c) tlow = 1 nm, thigh = 170 nm (r = 10 nm in all cases). One-dimensional graphs show the field distributions along the central lines and the insets show the blow-up of the electric field distribution near the metal wire region. (d) Normalized mode area, (e) propagation distance, (f) propagation distance to mode size ratio and (g) the effective index, neff, as a function of thigh. The curves of the same color correspond to the same parameter values.

Fig. 4
Fig. 4

Modal characteristics of the 2nd mode with different r values in the circular HPW and the fundamental mode in the dielectric wire waveguide. (a) Normalized mode area and (b) propagation distance as a function of thigh. Electric field profiles for (c) r = 0 nm, tlow = 0 nm, and thigh = 165 nm, (d) r = 2 nm, tlow = 1 nm, and thigh = 180 nm, and (e) r = 20 nm, tlow = 1 nm, and thigh = 170 nm. One-dimensional graphs show the field distributions along the central lines and the insets show the blow-up of the electric field distributions near the metal wire region. (f) Propagation distance to mode size ratio and (g) the effective index of the mode as a function of thigh.

Fig. 5
Fig. 5

Normalized mode area versus propagation distance. Top three trajectories indicate the circular HPWs, and bottom two indicate the dielectric wire HPW and metal wire, respectively. Data has been obtained by varying tlow in the circular HPWs, h in the dielectric wire HPW, and r in the metal wire. The rest parameters at the given geometries are thigh = 180 nm for the green and red lines, thigh = 180 nm for the purple line, and d = 200 nm for the blue line.

Fig. 6
Fig. 6

Schematics of (a) the lightwave circuit element and (b) the plasmonic nanolaser cavity as the applications of the circular HPW. As for the lightwave circuit element, the planarized structure is devised from the fact that the dipole-like mode of the circular HPW is confined via index-guiding in one-direction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A m = P ave dxdy max[ P ave (x,y)] ,
P ave (x,y)= 1 2 Re[E(x,y)×H (x,y) ].

Metrics