Abstract

A novel magnetic field sensor based on Terfenol-D coated fiber Bragg grating with spiral microstructure was proposed and demonstrated. Through a specially-designed holder, the spiral microstructure was ablated into the fiber Bragg grating (FBG) cladding by femtosecond laser. Due to the spiral microstructure, the sensitivity of FBG coated with magnetostrictive film was enhanced greatly. When the spiral pitch is 50 μm and microgroove depth is 13.5μm, the sensitivity of the magnetic field sensor is roughly 5 times higher than that of non-microstructured standard FBG. The response to magnetic field is reversible, and could be applicable for magnetic field detection.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
    [CrossRef]
  2. K. T. V. Grattan and B. T. Meggitt, “Advanced Applications – Bragg Gratings and Distributed Sensors,” in Optical Fiber Sensor Technology (Kluwer Academic Publishers, 2000.)
  3. J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett.22(9), 603–605 (1997).
    [CrossRef] [PubMed]
  4. A. A. Moghadas and M. Shadaram, “Fiber Bragg grating sensor for fault detection in radial and network transmission lines,” Sensors (Basel)10(10), 9407–9423 (2010).
    [CrossRef] [PubMed]
  5. D. Satpathi, J. A. Moore, and M. G. Ennis, “Design of a Terfenol-D based fiber-optic current transducer,” IEEE Sens. J.5(5), 1057–1065 (2005).
    [CrossRef]
  6. C. Ambrosino, S. Campopiano, A. Cutolo, and A. Cusano, “Sensitivity tuning in Terfenol-D based fiber Bragg grating magnetic sensors,” IEEE Sens. J.8(9), 1519–1520 (2008).
    [CrossRef]
  7. K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
    [CrossRef]
  8. J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “A Magnetostrictive Sensor Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination,” IEEE Photon. Technol. Lett.12(12), 1680–1682 (2000).
    [CrossRef]
  9. H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys.173(1), 122–126 (2012).
    [CrossRef]
  10. M. H. Yang, J. X. Dai, C. M. Zhou, and D. S. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express17(23), 20777–20782 (2009).
    [CrossRef] [PubMed]
  11. G. N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion, “Characterisation and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser ablated microslot for the detection of static magnetic fields,” Opt. Express19(1), 363–370 (2011).
    [CrossRef] [PubMed]

2012 (1)

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys.173(1), 122–126 (2012).
[CrossRef]

2011 (1)

2010 (1)

A. A. Moghadas and M. Shadaram, “Fiber Bragg grating sensor for fault detection in radial and network transmission lines,” Sensors (Basel)10(10), 9407–9423 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

C. Ambrosino, S. Campopiano, A. Cutolo, and A. Cusano, “Sensitivity tuning in Terfenol-D based fiber Bragg grating magnetic sensors,” IEEE Sens. J.8(9), 1519–1520 (2008).
[CrossRef]

2005 (2)

D. Satpathi, J. A. Moore, and M. G. Ennis, “Design of a Terfenol-D based fiber-optic current transducer,” IEEE Sens. J.5(5), 1057–1065 (2005).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

2003 (1)

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

2000 (1)

J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “A Magnetostrictive Sensor Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination,” IEEE Photon. Technol. Lett.12(12), 1680–1682 (2000).
[CrossRef]

1997 (1)

Allsop, T.

Ambrosino, C.

C. Ambrosino, S. Campopiano, A. Cutolo, and A. Cusano, “Sensitivity tuning in Terfenol-D based fiber Bragg grating magnetic sensors,” IEEE Sens. J.8(9), 1519–1520 (2008).
[CrossRef]

Andres, M. V.

J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “A Magnetostrictive Sensor Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination,” IEEE Photon. Technol. Lett.12(12), 1680–1682 (2000).
[CrossRef]

Arce-Diego, J. L.

Bennion, I.

Campopiano, S.

C. Ambrosino, S. Campopiano, A. Cutolo, and A. Cusano, “Sensitivity tuning in Terfenol-D based fiber Bragg grating magnetic sensors,” IEEE Sens. J.8(9), 1519–1520 (2008).
[CrossRef]

Chiang, K. S.

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

Cruz, J. L.

J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “A Magnetostrictive Sensor Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination,” IEEE Photon. Technol. Lett.12(12), 1680–1682 (2000).
[CrossRef]

Culverhouse, P.

Cusano, A.

C. Ambrosino, S. Campopiano, A. Cutolo, and A. Cusano, “Sensitivity tuning in Terfenol-D based fiber Bragg grating magnetic sensors,” IEEE Sens. J.8(9), 1519–1520 (2008).
[CrossRef]

Cutolo, A.

C. Ambrosino, S. Campopiano, A. Cutolo, and A. Cusano, “Sensitivity tuning in Terfenol-D based fiber Bragg grating magnetic sensors,” IEEE Sens. J.8(9), 1519–1520 (2008).
[CrossRef]

Dai, J. X.

Diez, A.

J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “A Magnetostrictive Sensor Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination,” IEEE Photon. Technol. Lett.12(12), 1680–1682 (2000).
[CrossRef]

Ennis, M. G.

D. Satpathi, J. A. Moore, and M. G. Ennis, “Design of a Terfenol-D based fiber-optic current transducer,” IEEE Sens. J.5(5), 1057–1065 (2005).
[CrossRef]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Jiang, D. S.

Kalli, K.

Kancheti, R.

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

Koutsides, C.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Liu, H.

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys.173(1), 122–126 (2012).
[CrossRef]

López-Higuera, J. M.

López-Ruisánchez, R.

Moghadas, A. A.

A. A. Moghadas and M. Shadaram, “Fiber Bragg grating sensor for fault detection in radial and network transmission lines,” Sensors (Basel)10(10), 9407–9423 (2010).
[CrossRef] [PubMed]

Moore, J. A.

D. Satpathi, J. A. Moore, and M. G. Ennis, “Design of a Terfenol-D based fiber-optic current transducer,” IEEE Sens. J.5(5), 1057–1065 (2005).
[CrossRef]

Mora, J.

J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “A Magnetostrictive Sensor Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination,” IEEE Photon. Technol. Lett.12(12), 1680–1682 (2000).
[CrossRef]

Muriel, M. A.

Neal, R.

Or, S. W.

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys.173(1), 122–126 (2012).
[CrossRef]

Rastogi, V.

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

Satpathi, D.

D. Satpathi, J. A. Moore, and M. G. Ennis, “Design of a Terfenol-D based fiber-optic current transducer,” IEEE Sens. J.5(5), 1057–1065 (2005).
[CrossRef]

Shadaram, M.

A. A. Moghadas and M. Shadaram, “Fiber Bragg grating sensor for fault detection in radial and network transmission lines,” Sensors (Basel)10(10), 9407–9423 (2010).
[CrossRef] [PubMed]

Smith, G. N.

Sugden, K.

Tam, H. Y.

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys.173(1), 122–126 (2012).
[CrossRef]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Yang, M. H.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Zhou, C. M.

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “A Magnetostrictive Sensor Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination,” IEEE Photon. Technol. Lett.12(12), 1680–1682 (2000).
[CrossRef]

IEEE Sens. J. (2)

D. Satpathi, J. A. Moore, and M. G. Ennis, “Design of a Terfenol-D based fiber-optic current transducer,” IEEE Sens. J.5(5), 1057–1065 (2005).
[CrossRef]

C. Ambrosino, S. Campopiano, A. Cutolo, and A. Cusano, “Sensitivity tuning in Terfenol-D based fiber Bragg grating magnetic sensors,” IEEE Sens. J.8(9), 1519–1520 (2008).
[CrossRef]

Opt. Eng. (1)

K. S. Chiang, R. Kancheti, and V. Rastogi, “Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents,” Opt. Eng.42(7), 1906–1909 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Sens. Actuators A Phys. (1)

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys.173(1), 122–126 (2012).
[CrossRef]

Sensors (Basel) (1)

A. A. Moghadas and M. Shadaram, “Fiber Bragg grating sensor for fault detection in radial and network transmission lines,” Sensors (Basel)10(10), 9407–9423 (2010).
[CrossRef] [PubMed]

Other (1)

K. T. V. Grattan and B. T. Meggitt, “Advanced Applications – Bragg Gratings and Distributed Sensors,” in Optical Fiber Sensor Technology (Kluwer Academic Publishers, 2000.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic configuration of the femtosecond laser micromachining system.

Fig. 2
Fig. 2

Two types of 3D microstructure designed for sensing device. (a) Spiral type (S-type, with a continue curved groove). (b) Spiral-like type (SL- type, with multi-ring shaped groove).

Fig. 3
Fig. 3

Schematic of TbDyFe sputtered FBG sensor structure and the characterization apparatus for static magnetic field.

Fig. 4
Fig. 4

The spectra of FBG in different statuses (sample S-1).

Fig. 5
Fig. 5

The central wavelength shifts of different FBG samples coated with Terfenol-D.

Fig. 6
Fig. 6

The central wavelength shift trend of FBG samples with different sizes. (a) Different depths of microgroove, (b) Different pitch of microgroove.

Tables (1)

Tables Icon

Table 1 Specifications of Tested Fibers

Metrics