Abstract

Intrinsic mode coupling in a graded-index plastic optical fiber (GI POF) is investigated using the developed coupled power theory for a GI POF with a microscopic heterogeneous core. The results showed that the intrinsic material properties can induce random power transitions between all the guided modes, whereas the structural deformation of microbending results in nearest-neighbor coupling. It was numerically demonstrated that efficient group-delay averaging due to intrinsic mode coupling brings the pronounced bandwidth enhancement in fibers with much shorter length than the case of glass multimode fibers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B49(1), 2–17 (2011).
    [CrossRef]
  2. A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett.19(16), 1254–1256 (2007).
    [CrossRef]
  3. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, “Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber,” J. Lightwave Technol.21(1), 111–121 (2003).
    [CrossRef]
  4. W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett.11(8), 997–999 (1999).
    [CrossRef]
  5. R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett.71(25), 3625–3627 (1997).
    [CrossRef]
  6. R. Olshansky, “Propagation in glass optical waveguide,” Rev. Mod. Phys.51(2), 341–367 (1979).
    [CrossRef]
  7. R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt.14(4), 935–945 (1975).
    [CrossRef] [PubMed]
  8. Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules25(18), 4807–4815 (1992).
    [CrossRef]
  9. Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules22(3), 1367–1373 (1989).
    [CrossRef]
  10. A. Inoue, T. Sassa, K. Makino, A. Kondo, and Y. Koike, “Intrinsic transmission bandwidths of graded-index plastic optical fibers,” Opt. Lett.37(13), 2583–2585 (2012).
    [CrossRef] [PubMed]
  11. P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys.20(6), 518–525 (1949).
    [CrossRef]
  12. D. Marcuse, Theory of Dielectric Optical Waveguide (Academic Press, 1974).
  13. K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron.16(3), 356–362 (1980).
    [CrossRef]

2012 (1)

2011 (1)

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B49(1), 2–17 (2011).
[CrossRef]

2007 (1)

A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett.19(16), 1254–1256 (2007).
[CrossRef]

2003 (1)

1999 (1)

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett.11(8), 997–999 (1999).
[CrossRef]

1997 (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett.71(25), 3625–3627 (1997).
[CrossRef]

1992 (1)

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules25(18), 4807–4815 (1992).
[CrossRef]

1989 (1)

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules22(3), 1367–1373 (1989).
[CrossRef]

1980 (1)

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron.16(3), 356–362 (1980).
[CrossRef]

1979 (1)

R. Olshansky, “Propagation in glass optical waveguide,” Rev. Mod. Phys.51(2), 341–367 (1979).
[CrossRef]

1975 (1)

1949 (1)

P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys.20(6), 518–525 (1949).
[CrossRef]

Bair, H. E.

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules25(18), 4807–4815 (1992).
[CrossRef]

Bueche, A. M.

P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys.20(6), 518–525 (1949).
[CrossRef]

Debye, P.

P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys.20(6), 518–525 (1949).
[CrossRef]

Dueser, M.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett.11(8), 997–999 (1999).
[CrossRef]

Garito, A. F.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett.71(25), 3625–3627 (1997).
[CrossRef]

Golowich, S. E.

Inoue, A.

Jiang, G.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett.71(25), 3625–3627 (1997).
[CrossRef]

Kitayama, K.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron.16(3), 356–362 (1980).
[CrossRef]

Knudsen, E.

Koeppen, C.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett.71(25), 3625–3627 (1997).
[CrossRef]

Koike, K.

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B49(1), 2–17 (2011).
[CrossRef]

Koike, Y.

A. Inoue, T. Sassa, K. Makino, A. Kondo, and Y. Koike, “Intrinsic transmission bandwidths of graded-index plastic optical fibers,” Opt. Lett.37(13), 2583–2585 (2012).
[CrossRef] [PubMed]

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B49(1), 2–17 (2011).
[CrossRef]

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules25(18), 4807–4815 (1992).
[CrossRef]

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules22(3), 1367–1373 (1989).
[CrossRef]

Kondo, A.

Makino, K.

Matsuoka, S.

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules25(18), 4807–4815 (1992).
[CrossRef]

Ohtsuka, Y.

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules22(3), 1367–1373 (1989).
[CrossRef]

Olshansky, R.

R. Olshansky, “Propagation in glass optical waveguide,” Rev. Mod. Phys.51(2), 341–367 (1979).
[CrossRef]

R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt.14(4), 935–945 (1975).
[CrossRef] [PubMed]

Onishi, T.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett.11(8), 997–999 (1999).
[CrossRef]

Polley, A.

A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett.19(16), 1254–1256 (2007).
[CrossRef]

Ralph, S. E.

A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett.19(16), 1254–1256 (2007).
[CrossRef]

Reed, W. A.

S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, “Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber,” J. Lightwave Technol.21(1), 111–121 (2003).
[CrossRef]

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett.11(8), 997–999 (1999).
[CrossRef]

Sassa, T.

Seikai, S.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron.16(3), 356–362 (1980).
[CrossRef]

Shi, R. F.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett.71(25), 3625–3627 (1997).
[CrossRef]

Tanio, N.

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules22(3), 1367–1373 (1989).
[CrossRef]

Uchida, N.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron.16(3), 356–362 (1980).
[CrossRef]

Wang, J.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett.71(25), 3625–3627 (1997).
[CrossRef]

White, W.

White, W. R.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett.11(8), 997–999 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett.71(25), 3625–3627 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron.16(3), 356–362 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett.19(16), 1254–1256 (2007).
[CrossRef]

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett.11(8), 997–999 (1999).
[CrossRef]

J. Appl. Phys. (1)

P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys.20(6), 518–525 (1949).
[CrossRef]

J. Lightwave Technol. (1)

J. Polym. Sci. B (1)

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B49(1), 2–17 (2011).
[CrossRef]

Macromolecules (2)

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules25(18), 4807–4815 (1992).
[CrossRef]

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules22(3), 1367–1373 (1989).
[CrossRef]

Opt. Lett. (1)

Rev. Mod. Phys. (1)

R. Olshansky, “Propagation in glass optical waveguide,” Rev. Mod. Phys.51(2), 341–367 (1979).
[CrossRef]

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguide (Academic Press, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Visually observable light trajectory due to forward scattering by microscopic heterogeneous structures in PMMA-based GI preform.

Fig. 2
Fig. 2

Power coupling coefficients hij as a function of the propagation constant difference Δβ for mode coupling due to (a) microscopic heterogeneities and (b) microbending.

Fig. 3
Fig. 3

Average power coupling coefficients between mode groups with principal mode numbers M and N for random mode coupling due to (a) microscopic heterogeneities and (b) microbending.

Fig. 4
Fig. 4

Output pulse-waveform for lengths of (a) 50 m, (b) 100 m, and (c) 200 m, and the relative frequency response for lengths of (d) 50 m, (e) 100 m, and (f) 200 m. The pink, light blue, and black lines correspond to GI POFs with microscopic heterogeneities, with microbending, and without any perturbations, respectively.

Fig. 5
Fig. 5

Pulse broadening in GI POFs with microscopic heterogeneities (pink), with microbending (light blue), and without any perturbations (dark gray). The dotted line is the fitted curve of σL0.65 for the equilibrium mode coupling of GI POF with microscopic heterogeneities.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g( r )= δ ε 2 exp( r 2 D 2 ),
P i z + τ i P i t = α i P i + j=1 N h ij ( P j P i ) ,
h ij = C ij | E i E j | 2 dxdy ,
C ij = δ ε 2 ω 2 π 3/2 D 3 8 exp( Δ β 2 D 2 4 ).

Metrics