Abstract

We compare the transmission performance of three different optical fibers in separate 256 Gb/s PM-16QAM systems amplified with erbium doped fiber amplifiers (EDFAs) and distributed Raman amplification. The span length in each system is 100 km. The fibers studied include standard single-mode fiber, single-mode fiber with ultra-low loss, and ultra-low loss fiber with large effective area. We find that the single-mode fiber with ultra-low loss and the large effective area fiber with ultra-low loss afford reach advantages of up to about 31% and 80%, respectively, over standard fiber measured at distances with 3 dB margin over the forward error correction (FEC) threshold. The Raman amplified systems provide about 50% reach length enhancement over the EDFA systems for all three fibers in the experimental set-up. For the best performing fiber with large effective area and ultra-low loss, the absolute reach lengths with 3 dB margin are greater than 1140 km and 1700 km for the for EDFA and Raman systems, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.29(4), 373–377 (2011).
    [CrossRef]
  2. M. S. Alfiad, M. Kuschnerov, S. L. Hansen, T. Wuth, D. van den Borne, and H. de Waardt, “Transmission of 11 x 224-Gb/s POLMUX-RZ-16QAM over 1500 km of LongLine and pure-silica SMF,” in Proceedings of European Conf. Opt. Commun. (2010), paper We.8.C.2.
  3. S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80x224 Gb/s unrepeatered transmission over 240 km of large-Aeff pure silica core fibre without remote optical pre-amplifier,” in Proceedings of European Conf. Opt. Commun. (2011), paper Th.13.C.7.
  4. M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. K. Fischer, L. Molle, M. Nolle, C. Schubert, and A. D. Ellis, “Polarization multiplexed 224 Gb/s 16QAM transmission employing digital back-propagation,” in Proceedings of European Conf. Opt. Commun. (2011), paper We.8.B.6.
  5. O. Bertran-Pardo, J. Renaudier, H. Mardoyan, P. Tan, F. Vacondio, M. Salsi, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, and J. Godin, “Experimental assessment of transmission reach for uncompensated 32-GBaud PDM-QPSK and PDM-16QAM,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2012), paper JW2A.53.
    [CrossRef]
  6. J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, and J. Godin, “Spectrally efficient long-haul transmission of 22-Tb/s using 40-Gbaud PDM-16QAM with coherent detection,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2012), paper OW4C.2.
    [CrossRef]
  7. K. Roberts, M. O’Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol.27(16), 3546–3559 (2009).
    [CrossRef]
  8. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol.27(15), 3042–3049 (2009).
    [CrossRef]
  9. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009).
    [CrossRef]
  10. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
    [CrossRef]
  11. E. Pincemin, N. Boudrioua, J. P. Turkiewicz, and T. Guillossou, “40 Gbps WDM transmission performance comparison between legacy and ultra low loss G.652 fibers,” J. Lightwave Technol.29(23), 3587–3598 (2011).
    [CrossRef]

2011 (2)

2010 (1)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

2009 (3)

Awadalla, A.

Boudrioua, N.

Chandrasekhar, S.

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

Fatadin, I.

Gnauck, A. H.

Guillossou, T.

Hoffmann, S.

Ives, D.

Krause, D. J.

Laperle, C.

Liu, X.

Mizuochi, T.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

Noe, R.

O’Sullivan, M.

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

Peckham, D. W.

Pfau, T.

Pincemin, E.

Roberts, K.

Savory, S. J.

Sun, H.

Turkiewicz, J. P.

Winzer, P. J.

Wu, K.-T.

Zhu, B.

IEEE Commun. Mag. (1)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

J. Lightwave Technol. (5)

Other (5)

M. S. Alfiad, M. Kuschnerov, S. L. Hansen, T. Wuth, D. van den Borne, and H. de Waardt, “Transmission of 11 x 224-Gb/s POLMUX-RZ-16QAM over 1500 km of LongLine and pure-silica SMF,” in Proceedings of European Conf. Opt. Commun. (2010), paper We.8.C.2.

S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80x224 Gb/s unrepeatered transmission over 240 km of large-Aeff pure silica core fibre without remote optical pre-amplifier,” in Proceedings of European Conf. Opt. Commun. (2011), paper Th.13.C.7.

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. K. Fischer, L. Molle, M. Nolle, C. Schubert, and A. D. Ellis, “Polarization multiplexed 224 Gb/s 16QAM transmission employing digital back-propagation,” in Proceedings of European Conf. Opt. Commun. (2011), paper We.8.B.6.

O. Bertran-Pardo, J. Renaudier, H. Mardoyan, P. Tan, F. Vacondio, M. Salsi, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, and J. Godin, “Experimental assessment of transmission reach for uncompensated 32-GBaud PDM-QPSK and PDM-16QAM,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2012), paper JW2A.53.
[CrossRef]

J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, and J. Godin, “Spectrally efficient long-haul transmission of 22-Tb/s using 40-Gbaud PDM-16QAM with coherent detection,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2012), paper OW4C.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental system set-up. AOM: acousto-optic modulator switch, VOA: variable optical attenuator, GEF: gain equalizing filter, LSPS: loop synchronous polarization scrambler, PBC: polarization beam combiner, PC: polarization controller. The amplifier at the end of each span was either an EDFA or backward-pumped Raman amplifier.

Fig. 2
Fig. 2

Simplified schematic diagram of the 16QAM transmitter configuration.

Fig. 3
Fig. 3

Back-to-back OSNR sensitivity data for the experimental 256 Gb/s PM-16QAM transmitter and digital coherent receiver.

Fig. 4
Fig. 4

EDFA systems: (a) BER as a function of channel power for 1550.92 nm channel in 20 channel systems. (b) Q vs. transmission distance for 1550.92 nm channel in 20 channel systems. Error bars show range of Q values over all 20 channels at select distances.

Fig. 5
Fig. 5

Q vs. OSNR for SMF-28 ULL fiber system with EDFAs. Measurements are for the 1550.92 nm channel, with adjacent channels on and with adjacent channels off.

Fig. 6
Fig. 6

Summary of reach length results for EDFA systems with 100 km spans. (a) Absolute reach lengths in km. (b) Reach lengths normalized to that of standard single-mode fiber.

Fig. 7
Fig. 7

Raman amplified systems: (a) BER as a function of channel power for 1550.92 nm channel in 20 channel systems. (b) Q vs. transmission distance for 1550.92 nm channel in 20 channel systems. Error bars show range of Q values over all 20 channels at select distances.

Fig. 8
Fig. 8

Summary of reach length results for Raman systems with 100 km spans. (a) Absolute reach lengths in km. (b) Reach lengths normalized to that of standard single-mode fiber.

Metrics