Abstract

We report the first laser operation based on Ho3+-doped LuLiF4 single crystal, which is directly pumped with 1.15-μm laser diode (LD). Based on the numerical model, it is found that the “two-for-one” effect induced by the cross-relaxation plays an important role for the laser efficiency. The maximum continuous wave (CW) output power of 1.4 W is produced with a beam propagation factor of M2 ~2 at the lasing wavelength of 2.066 μm. The slope efficiency of 29% with respect to absorbed power is obtained.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 microm laser,” Opt. Lett.35(3), 420–422 (2010).
    [CrossRef] [PubMed]
  2. C. C. Zhao, Y. Hang, L. H. Zhang, J. G. Yin, P. C. Hua, and E. Ma, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater.33(11), 1610–1615 (2011).
    [CrossRef]
  3. H. J. Strauss, W. Koen, C. Bollig, M. J. D. Esser, C. Jacobs, O. J. P. Collett, and D. R. Preussler, “Ho:YLF & Ho:LuLF slab amplifier system delivering 200 mJ, 2 µm single-frequency pulses,” Opt. Express19(15), 13974–13979 (2011).
    [CrossRef] [PubMed]
  4. M. Schellhorn, “High-energy, in-band pumped Q-switched Ho3+:LuLiF4 2 microm laser,” Opt. Lett.35(15), 2609–2611 (2010).
    [CrossRef] [PubMed]
  5. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. Terry, “Intra-cavity side-pumped Ho:YAG laser,” Opt. Express14(22), 10481–10487 (2006).
    [CrossRef] [PubMed]
  6. H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett.36(9), 1575–1577 (2011).
    [CrossRef] [PubMed]
  7. K. Scholle and P. Fuhrberg, “In-band pumping of high-power Ho:YAG lasers by laser diodes at 1.9 μm,” in Proceedings of CLEO/QELS (Optical Society of America, 2008), paper CTuAA1.
  8. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett.37(4), 515–517 (2012).
    [CrossRef] [PubMed]
  9. A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett.35(4), 490–492 (2010).
    [CrossRef] [PubMed]
  10. S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett.32(17), 2496–2498 (2007).
    [CrossRef] [PubMed]
  11. F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
    [CrossRef]
  12. C. Y. Huang, Y. L. Tang, S. L. Wang, R. Zhang, J. Zheng, and J. Q. Xu, “Theoretical modeling of Ho-doped lasers pumped by laser-diodes around 1.125 μm,” J. Lightwave Technol.30(20), 3235–3240 (2012).
    [CrossRef]
  13. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys. Condens. Matter17(48), 7643–7665 (2005).
    [CrossRef]
  14. L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3A15O12 and Tm:Y3A15O12,” Phys. Rev. B50(10), 6609–6619 (1994).
    [CrossRef]
  15. N. P. Barnes, B. M. Walsh, and E. D. Filer, “Ho:Ho upconversion: applications to Ho lasers,” J. Opt. Soc. Am. B20(6), 1212–1219 (2003).
    [CrossRef]
  16. S. D. Jackson and T. A. King, “Theoretical model of Tm-doped silica fiber laser,” J. Lightwave Technol.17(5), 948–956 (1999).
    [CrossRef]
  17. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, CW 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt.37(36), 8460–8476 (1998).
    [CrossRef] [PubMed]

2012

2011

2010

2009

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

2007

2006

2005

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys. Condens. Matter17(48), 7643–7665 (2005).
[CrossRef]

2003

1999

1998

1994

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3A15O12 and Tm:Y3A15O12,” Phys. Rev. B50(10), 6609–6619 (1994).
[CrossRef]

Barnes, N. P.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys. Condens. Matter17(48), 7643–7665 (2005).
[CrossRef]

N. P. Barnes, B. M. Walsh, and E. D. Filer, “Ho:Ho upconversion: applications to Ho lasers,” J. Opt. Soc. Am. B20(6), 1212–1219 (2003).
[CrossRef]

Betterton, J. G.

Bollig, C.

Bugge, F.

Chang, R. S. F.

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3A15O12 and Tm:Y3A15O12,” Phys. Rev. B50(10), 6609–6619 (1994).
[CrossRef]

Chen, H.

Clarkson, W. A.

Collett, O. J. P.

Cornacchia, F.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

Djeu, N.

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3A15O12 and Tm:Y3A15O12,” Phys. Rev. B50(10), 6609–6619 (1994).
[CrossRef]

Dvoyrin, V. V.

Erbert, G.

Esser, M. J. D.

Filer, E. D.

Fuhrberg, P.

Gorton, E. K.

Grew, G. W.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys. Condens. Matter17(48), 7643–7665 (2005).
[CrossRef]

Hang, Y.

C. C. Zhao, Y. Hang, L. H. Zhang, J. G. Yin, P. C. Hua, and E. Ma, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater.33(11), 1610–1615 (2011).
[CrossRef]

Hua, P. C.

C. C. Zhao, Y. Hang, L. H. Zhang, J. G. Yin, P. C. Hua, and E. Ma, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater.33(11), 1610–1615 (2011).
[CrossRef]

Huang, C. Y.

Jackson, S. D.

Jacobs, C.

Killinger, D. K.

Kim, J. W.

King, T. A.

Koen, W.

Koopmann, P.

Kurkov, A. S.

Lamrini, S.

Ma, E.

C. C. Zhao, Y. Hang, L. H. Zhang, J. G. Yin, P. C. Hua, and E. Ma, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater.33(11), 1610–1615 (2011).
[CrossRef]

Mackenzie, J. I.

Marakulin, A. V.

Parisi, D.

Preussler, D. R.

Schäfer, M.

Schellhorn, M.

Scholle, K.

Shaw, L. B.

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3A15O12 and Tm:Y3A15O12,” Phys. Rev. B50(10), 6609–6619 (1994).
[CrossRef]

Shen, D.

Shepherd, D. P.

So, S.

Strauss, H. J.

Taczak, T. M.

Tang, D.

Tang, Y. L.

Terry, J. A.

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

Tonelli, M.

J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 microm laser,” Opt. Lett.35(3), 420–422 (2010).
[CrossRef] [PubMed]

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

Veronesi, S.

Walsh, B. M.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys. Condens. Matter17(48), 7643–7665 (2005).
[CrossRef]

N. P. Barnes, B. M. Walsh, and E. D. Filer, “Ho:Ho upconversion: applications to Ho lasers,” J. Opt. Soc. Am. B20(6), 1212–1219 (2003).
[CrossRef]

Wang, S. L.

Xu, J. Q.

Yang, H.

Yang, X.

Yin, J. G.

C. C. Zhao, Y. Hang, L. H. Zhang, J. G. Yin, P. C. Hua, and E. Ma, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater.33(11), 1610–1615 (2011).
[CrossRef]

Zhang, J.

Zhang, L. H.

C. C. Zhao, Y. Hang, L. H. Zhang, J. G. Yin, P. C. Hua, and E. Ma, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater.33(11), 1610–1615 (2011).
[CrossRef]

Zhang, R.

Zhao, C. C.

C. C. Zhao, Y. Hang, L. H. Zhang, J. G. Yin, P. C. Hua, and E. Ma, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater.33(11), 1610–1615 (2011).
[CrossRef]

Zhao, T.

Zheng, J.

Appl. Opt.

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys. Condens. Matter17(48), 7643–7665 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

C. C. Zhao, Y. Hang, L. H. Zhang, J. G. Yin, P. C. Hua, and E. Ma, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater.33(11), 1610–1615 (2011).
[CrossRef]

Phys. Rev. B

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3A15O12 and Tm:Y3A15O12,” Phys. Rev. B50(10), 6609–6619 (1994).
[CrossRef]

Prog. Quantum Electron.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

Other

K. Scholle and P. Fuhrberg, “In-band pumping of high-power Ho:YAG lasers by laser diodes at 1.9 μm,” in Proceedings of CLEO/QELS (Optical Society of America, 2008), paper CTuAA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The unpolarized absorption spectrum of Ho:LLF (1.0 at.%). (b) Energy level structure and energy transfer processes of Ho3+ ions in LLF pumped between 5I8 and 5I6 levels. The relaxation times (in the unit of millisecond) corresponding to each energy transfer processes are also shown in the Fig [2,1215].

Fig. 2
Fig. 2

Experimental setup for the directly diode-pumped Ho3+:LLF crystal laser.

Fig. 3
Fig. 3

Effects of ESA in Ho:LLF. (a) The calculated and measured output power as a function of absorbed pump power from Ho-doped LLF(1.0 at.%) laser. (b) Slope efficiency with respect to the absorbed pump power versus the transmission of the coupler.

Fig. 4
Fig. 4

Effects of CR-ETU on the laser output. (a) Calculated and measured output power as a function of absorbed pump power from Ho-doped LLF laser. (b) Output power with the pump power near the threshold (0.6W) versus the transmission of coupler. (c) Slope efficiency with respect to the absorbed pump power versus the transmission of coupler.

Fig. 5
Fig. 5

Experimental results of the Ho:LLF (1.0 at.%) laser. (a) Output power versus absorbed pump power of Ho:LLF crystal lasers. (b) Emission spectrum of Ho:LLF(1.0 at.%) crystal laser.

Tables (1)

Tables Icon

Table 1 Parameters used in the numerical simulations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i=1 4 N i τ i0 W Pump + W Laser CRETU=0
i=2 4 N i τ i1 N 1 τ 10 W Laser W ESA +2CR+2ETU=0
CR= k 2101 N 2 N 0 + k 3101 N 3 N 0
ETU= k 1012 N 1 2 k 1013 N 1 2
S(t) τ c +c l mat l opt ( σ 10 N 1 σ 01 N 0 + δ S )S(t)=0

Metrics