Abstract

In this paper, an in-line comb filter with flat-top spectral response is proposed and constructed based on a cascaded all-solid photonic bandgap fiber modal interferometer. It consists of two short pieces of all-solid photonic bandgap fiber and two standard single-mode fibers as lead fibers with core-offset splices between them. The theoretical and experimental results demonstrated that by employing a cut and resplice process on the central position of all-solid photonic bandgap fiber, the interference spectra are well tailored and flat-top spectral profiles could be realized by the controllable offset amount of the resplice. The channel position also could be tuned by applying longitudinal torsion with up to 4 nm tuning range. Such a flat-top fiber comb filter is easy-to-fabricate and with a designable passband width and flat-top profile.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett.20(24), 2156–2158 (2008).
    [CrossRef]
  2. C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
    [CrossRef]
  3. X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett.17(2), 384–386 (2005).
    [CrossRef]
  4. C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express14(11), 4636–4643 (2006).
    [CrossRef] [PubMed]
  5. Y. W. Lee, H. T. Kim, J. Jung, and B. H. Lee, “Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination,” Opt. Express13(3), 1039–1048 (2005).
    [CrossRef] [PubMed]
  6. Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett.17(12), 2619–2621 (2005).
    [CrossRef]
  7. Z. Luo, W. Cao, A. Luo, and W. Xu, “Polarization-independent, multifunctional all-fiber comb filter using variable ratio coupler-based Mach-Zehnder interferometer,” J. Lightwave Technol.30(12), 1857–1862 (2012).
    [CrossRef]
  8. Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett.16(1), 168–170 (2004).
    [CrossRef]
  9. A. P. Luo, Z. C. Luo, W. C. Xu, and H. Cui, “Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer,” Opt. Express18(6), 6056–6063 (2010).
    [CrossRef] [PubMed]
  10. S. Derevyanko, “Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index,” Opt. Lett.33(20), 2404–2406 (2008).
    [CrossRef] [PubMed]
  11. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B102(3), 595–599 (2011).
    [CrossRef]
  12. Z. Tian and S. H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightwave Technol.27(13), 2296–2306 (2009).
    [CrossRef]
  13. G. B. Ren, P. Shum, L. R. Zhang, X. Yu, W. J. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett.32(9), 1023–1025 (2007).
    [CrossRef] [PubMed]
  14. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011).
    [CrossRef] [PubMed]

2012

2011

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B102(3), 595–599 (2011).
[CrossRef]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011).
[CrossRef] [PubMed]

2010

2009

2008

S. Derevyanko, “Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index,” Opt. Lett.33(20), 2404–2406 (2008).
[CrossRef] [PubMed]

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett.20(24), 2156–2158 (2008).
[CrossRef]

2007

2006

2005

Y. W. Lee, H. T. Kim, J. Jung, and B. H. Lee, “Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination,” Opt. Express13(3), 1039–1048 (2005).
[CrossRef] [PubMed]

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett.17(12), 2619–2621 (2005).
[CrossRef]

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett.17(2), 384–386 (2005).
[CrossRef]

2004

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett.16(1), 168–170 (2004).
[CrossRef]

2003

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
[CrossRef]

Bennion, I.

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett.17(2), 384–386 (2005).
[CrossRef]

Cao, W.

Chan, H. P.

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett.17(12), 2619–2621 (2005).
[CrossRef]

Cheng, W. H.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express14(11), 4636–4643 (2006).
[CrossRef] [PubMed]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
[CrossRef]

Chu, P. L.

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett.17(12), 2619–2621 (2005).
[CrossRef]

Cui, H.

Deng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B102(3), 595–599 (2011).
[CrossRef]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011).
[CrossRef] [PubMed]

Derevyanko, S.

Fang, Q.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett.20(24), 2156–2158 (2008).
[CrossRef]

Geng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B102(3), 595–599 (2011).
[CrossRef]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011).
[CrossRef] [PubMed]

Hsieh, C. H.

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
[CrossRef]

Jung, J.

Kim, H. T.

Kwong, D. L.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett.20(24), 2156–2158 (2008).
[CrossRef]

Lee, B. H.

Lee, C. W.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express14(11), 4636–4643 (2006).
[CrossRef] [PubMed]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
[CrossRef]

Lee, Y. W.

Li, X.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011).
[CrossRef] [PubMed]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B102(3), 595–599 (2011).
[CrossRef]

Lo, G. Q.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett.20(24), 2156–2158 (2008).
[CrossRef]

Luo, A.

Luo, A. P.

Luo, J.

Luo, Z.

Luo, Z. C.

McMichael, I.

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
[CrossRef]

Pal, B. P.

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett.17(12), 2619–2621 (2005).
[CrossRef]

Ren, G. B.

Shu, X. W.

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett.17(2), 384–386 (2005).
[CrossRef]

Shum, P.

Soh, Y.

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett.16(1), 168–170 (2004).
[CrossRef]

Song, J. F.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett.20(24), 2156–2158 (2008).
[CrossRef]

Sugden, K.

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett.17(2), 384–386 (2005).
[CrossRef]

Tan, X.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011).
[CrossRef] [PubMed]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B102(3), 595–599 (2011).
[CrossRef]

Tao, S. H.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett.20(24), 2156–2158 (2008).
[CrossRef]

Tian, Z.

Tong, W. J.

Wang, Q.

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett.16(1), 168–170 (2004).
[CrossRef]

Wang, R.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express14(11), 4636–4643 (2006).
[CrossRef] [PubMed]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
[CrossRef]

Wen, Z.

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
[CrossRef]

Wu, Q.

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett.17(12), 2619–2621 (2005).
[CrossRef]

Xu, W.

Xu, W. C.

Yam, S. H.

Yeh, P.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express14(11), 4636–4643 (2006).
[CrossRef] [PubMed]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
[CrossRef]

Yu, M. B.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett.20(24), 2156–2158 (2008).
[CrossRef]

Yu, X.

Yu, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011).
[CrossRef] [PubMed]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B102(3), 595–599 (2011).
[CrossRef]

Zhang, L. R.

Zhang, Y.

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett.16(1), 168–170 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B102(3), 595–599 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett.20(24), 2156–2158 (2008).
[CrossRef]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett.15(2), 242–244 (2003).
[CrossRef]

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett.17(2), 384–386 (2005).
[CrossRef]

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett.17(12), 2619–2621 (2005).
[CrossRef]

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett.16(1), 168–170 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the cascaded AS-PBF-based MZI.

Fig. 2
Fig. 2

Theoretical transmission spectra of a cascaded AS-PBF-based MZI with different offset amount of splice 3.

Fig. 3
Fig. 3

(a) cross section of AS-PBF and enlarged unit cell of high-index rod; (b), (c) and (d) are the x- and y-axis side views of splice 1, splice 3 and splice 2, respectively; (e) schematic of experimental setup with cascaded AS-PBF MZI.

Fig. 4
Fig. 4

(a) Evolution of the interference spectra with different core offset amount in butt-coupled position 3; (b) FFT spatial spectra with different core-offset amount in butt-coupled position 3, and the inset is an enlarged view from 1538 to 1542 nm with different offset amount

Fig. 5
Fig. 5

(a) Output spectrum of the AS-PBF-MZI-based comb filter; (b) Expanded view of optical channels from 1525 nm to 1585 nm.

Fig. 6
Fig. 6

(a) Filter spectra with longitudinal strains of 0 and 1850 µε, respectively; (b) Temperature response and tunable channel characteristic of the comb filter with AS-PBF length of 158 mm.

Fig. 7
Fig. 7

Wavelengths shift with time for the dips at 1539.80nm, 1547.70nm and 1569.65nm

Tables (1)

Tables Icon

Table 1 optical properties of AS-PBF-MZI-based comb filter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 3 (r)= m=1 2 a m E m (r) e i β m l/2
a m = 0 E s (r) E m (r)rdr ( 0 | E s (r) | 2 rdr 0 | E m (r) | 2 rdr ) 1/2
E 2 (r)= m=1 2 p=1 2 b m E m (r) e i( β m + β p )l/2
I= I 01 + I 11 +2 I 01 I 11 [ (1η)cos(φ+2π)+ηcos( φ +3π) ]

Metrics