Abstract

In this paper, an in-line comb filter with flat-top spectral response is proposed and constructed based on a cascaded all-solid photonic bandgap fiber modal interferometer. It consists of two short pieces of all-solid photonic bandgap fiber and two standard single-mode fibers as lead fibers with core-offset splices between them. The theoretical and experimental results demonstrated that by employing a cut and resplice process on the central position of all-solid photonic bandgap fiber, the interference spectra are well tailored and flat-top spectral profiles could be realized by the controllable offset amount of the resplice. The channel position also could be tuned by applying longitudinal torsion with up to 4 nm tuning range. Such a flat-top fiber comb filter is easy-to-fabricate and with a designable passband width and flat-top profile.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination

Yong Wook Lee, Hyun-Tak Kim, Jaehoon Jung, and Byoungho Lee
Opt. Express 13(3) 1039-1048 (2005)

Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges

Limin Xiao, Wei Jin, and M. S. Demokan
Opt. Lett. 32(2) 115-117 (2007)

Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters

Yiping Wang, Hartmut Bartelt, Sven Brueckner, Jens Kobelke, Manfred Rothhardt, Klaus Mörl, Wolfgang Ecke, and Reinhardt Willsch
Opt. Express 16(10) 7258-7263 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
    [Crossref]
  2. C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
    [Crossref]
  3. X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett. 17(2), 384–386 (2005).
    [Crossref]
  4. C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express 14(11), 4636–4643 (2006).
    [Crossref] [PubMed]
  5. Y. W. Lee, H. T. Kim, J. Jung, and B. H. Lee, “Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination,” Opt. Express 13(3), 1039–1048 (2005).
    [Crossref] [PubMed]
  6. Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett. 17(12), 2619–2621 (2005).
    [Crossref]
  7. Z. Luo, W. Cao, A. Luo, and W. Xu, “Polarization-independent, multifunctional all-fiber comb filter using variable ratio coupler-based Mach-Zehnder interferometer,” J. Lightwave Technol. 30(12), 1857–1862 (2012).
    [Crossref]
  8. Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
    [Crossref]
  9. A. P. Luo, Z. C. Luo, W. C. Xu, and H. Cui, “Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer,” Opt. Express 18(6), 6056–6063 (2010).
    [Crossref] [PubMed]
  10. S. Derevyanko, “Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index,” Opt. Lett. 33(20), 2404–2406 (2008).
    [Crossref] [PubMed]
  11. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B 102(3), 595–599 (2011).
    [Crossref]
  12. Z. Tian and S. H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009).
    [Crossref]
  13. G. B. Ren, P. Shum, L. R. Zhang, X. Yu, W. J. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
    [Crossref] [PubMed]
  14. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
    [Crossref] [PubMed]

2012 (1)

2011 (2)

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
[Crossref] [PubMed]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B 102(3), 595–599 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

S. Derevyanko, “Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index,” Opt. Lett. 33(20), 2404–2406 (2008).
[Crossref] [PubMed]

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (3)

Y. W. Lee, H. T. Kim, J. Jung, and B. H. Lee, “Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination,” Opt. Express 13(3), 1039–1048 (2005).
[Crossref] [PubMed]

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett. 17(2), 384–386 (2005).
[Crossref]

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett. 17(12), 2619–2621 (2005).
[Crossref]

2004 (1)

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[Crossref]

2003 (1)

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[Crossref]

Bennion, I.

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett. 17(2), 384–386 (2005).
[Crossref]

Cao, W.

Chan, H. P.

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett. 17(12), 2619–2621 (2005).
[Crossref]

Cheng, W. H.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express 14(11), 4636–4643 (2006).
[Crossref] [PubMed]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[Crossref]

Chu, P. L.

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett. 17(12), 2619–2621 (2005).
[Crossref]

Cui, H.

Deng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
[Crossref] [PubMed]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B 102(3), 595–599 (2011).
[Crossref]

Derevyanko, S.

Fang, Q.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

Geng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B 102(3), 595–599 (2011).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
[Crossref] [PubMed]

Hsieh, C. H.

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[Crossref]

Jung, J.

Kim, H. T.

Kwong, D. L.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

Lee, B. H.

Lee, C. W.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express 14(11), 4636–4643 (2006).
[Crossref] [PubMed]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[Crossref]

Lee, Y. W.

Li, X.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
[Crossref] [PubMed]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B 102(3), 595–599 (2011).
[Crossref]

Lo, G. Q.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

Luo, A.

Luo, A. P.

Luo, J.

Luo, Z.

Luo, Z. C.

McMichael, I.

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[Crossref]

Pal, B. P.

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett. 17(12), 2619–2621 (2005).
[Crossref]

Ren, G. B.

Shu, X. W.

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett. 17(2), 384–386 (2005).
[Crossref]

Shum, P.

Soh, Y.

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[Crossref]

Song, J. F.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

Sugden, K.

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett. 17(2), 384–386 (2005).
[Crossref]

Tan, X.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B 102(3), 595–599 (2011).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
[Crossref] [PubMed]

Tao, S. H.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

Tian, Z.

Tong, W. J.

Wang, Q.

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[Crossref]

Wang, R.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express 14(11), 4636–4643 (2006).
[Crossref] [PubMed]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[Crossref]

Wen, Z.

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[Crossref]

Wu, Q.

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett. 17(12), 2619–2621 (2005).
[Crossref]

Xu, W.

Xu, W. C.

Yam, S. H.

Yeh, P.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express 14(11), 4636–4643 (2006).
[Crossref] [PubMed]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[Crossref]

Yu, M. B.

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

Yu, X.

Yu, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
[Crossref] [PubMed]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B 102(3), 595–599 (2011).
[Crossref]

Zhang, L. R.

Zhang, Y.

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “A cascaded photonic crystal fiber Mach-Zehnder interferometer formed by extra electric arc discharges,” Appl. Phys. B 102(3), 595–599 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (5)

J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Nitride-based compact double-ring resonator comb filter with flat-top response,” IEEE Photon. Technol. Lett. 20(24), 2156–2158 (2008).
[Crossref]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, “Flat-top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003).
[Crossref]

X. W. Shu, K. Sugden, and I. Bennion, “Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure,” IEEE Photon. Technol. Lett. 17(2), 384–386 (2005).
[Crossref]

Q. Wu, P. L. Chu, H. P. Chan, and B. P. Pal, “Polymer-based compact comb filter with flat top response,” IEEE Photon. Technol. Lett. 17(12), 2619–2621 (2005).
[Crossref]

Q. Wang, Y. Zhang, and Y. Soh, “All-fiber 3×3 interleaver design with flat-top passband,” IEEE Photon. Technol. Lett. 16(1), 168–170 (2004).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the cascaded AS-PBF-based MZI.

Fig. 2
Fig. 2

Theoretical transmission spectra of a cascaded AS-PBF-based MZI with different offset amount of splice 3.

Fig. 3
Fig. 3

(a) cross section of AS-PBF and enlarged unit cell of high-index rod; (b), (c) and (d) are the x- and y-axis side views of splice 1, splice 3 and splice 2, respectively; (e) schematic of experimental setup with cascaded AS-PBF MZI.

Fig. 4
Fig. 4

(a) Evolution of the interference spectra with different core offset amount in butt-coupled position 3; (b) FFT spatial spectra with different core-offset amount in butt-coupled position 3, and the inset is an enlarged view from 1538 to 1542 nm with different offset amount

Fig. 5
Fig. 5

(a) Output spectrum of the AS-PBF-MZI-based comb filter; (b) Expanded view of optical channels from 1525 nm to 1585 nm.

Fig. 6
Fig. 6

(a) Filter spectra with longitudinal strains of 0 and 1850 µε, respectively; (b) Temperature response and tunable channel characteristic of the comb filter with AS-PBF length of 158 mm.

Fig. 7
Fig. 7

Wavelengths shift with time for the dips at 1539.80nm, 1547.70nm and 1569.65nm

Tables (1)

Tables Icon

Table 1 optical properties of AS-PBF-MZI-based comb filter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 3 (r)= m=1 2 a m E m (r) e i β m l/2
a m = 0 E s (r) E m (r)rdr ( 0 | E s (r) | 2 rdr 0 | E m (r) | 2 rdr ) 1/2
E 2 (r)= m=1 2 p=1 2 b m E m (r) e i( β m + β p )l/2
I= I 01 + I 11 +2 I 01 I 11 [ (1η)cos(φ+2π)+ηcos( φ +3π) ]

Metrics