Abstract

In this work the effect of deviations of the waveguide shape introduced by manufacturing tolerances on the performance of lateral directional couplers and ring resonators based on SOI-rib-waveguides are investigated by using Full Wave 3D Finite Element Method. Beside dimensional deviations like waveguide width and slab thickness for the first time the influence of waveguide sidewall angle and wet chemical cleaning procedures on the device performance are carefully analyzed. Efficient measures against systematic process tolerances are proposed and possible actions to improve device stability and reproducibility are discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007).
    [CrossRef] [PubMed]
  2. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14467–14475 (2007).
    [CrossRef] [PubMed]
  3. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005).
    [CrossRef]
  4. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip of future generations of chip multi-processors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
    [CrossRef]
  5. B. A. Small, B. G. Lee, K. Bergman, Q. Xu, and M. Lipson, “Multiple-wavelength integrated photonic networks based on microring resonator devices,” J. Opt. Netw.6(2), 112–120 (2007).
    [CrossRef]
  6. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011).
    [CrossRef] [PubMed]
  7. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012).
    [CrossRef]
  8. T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
    [CrossRef]
  9. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett.29(24), 2861–2863 (2004).
    [CrossRef] [PubMed]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  11. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008).
    [CrossRef] [PubMed]
  12. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  13. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express16(1), 334–339 (2008).
    [CrossRef] [PubMed]
  14. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express14(22), 10838–10843 (2006).
    [CrossRef] [PubMed]
  15. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16(11), 7693–7702 (2008).
    [CrossRef] [PubMed]
  16. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010).
    [CrossRef]
  17. M. A. Popovic, T. Barwicz, E. P. Ippen, and F. X. Kartner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Long Beach, CA, 21–26 May 2006, paper CTuCC1.
    [CrossRef]
  18. K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
    [CrossRef]
  19. Y. Qian, J. Song, S. Kim, W. Hu, and G. P. Nordin, “Compact waveguide splitter networks,” Opt. Express16(7), 4981–4990 (2008).
    [CrossRef] [PubMed]
  20. C. C. Welch, A. L. Goodyear, T. Wahlbrink, M. C. Lemme, and T. Mollenhauer, “Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas,” Microelectron. Eng.83(4-9), 1170–1173 (2006).
    [CrossRef]
  21. G. K. Celler, D. L. Barr, and J. M. Rosamilia, “Etching of silicon by the RCA standard clean 1,” Electrochem. Solid St.3(1), 47–49 (1999).
    [CrossRef]
  22. J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010).
    [CrossRef]
  23. Y. Urino, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, H. Takahashi, E. Saito, M. Okano, T. Shimizu, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, J. Fujikata, D. Shimura, H. Okayama, H. Yaegashi, T. Tsuchizawa, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, and Y. Arakawa, “Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate,” Opt. Express20(26), B256–B263 (2012).
    [CrossRef] [PubMed]
  24. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol.23(8), 2455–2461 (2005).
    [CrossRef]
  25. C. Su, H. Ke, and T. Hubing, “Overview of electromagnetic modeling software,” 25th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, CA, 8–13 March 2009.
  26. J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication and Applications, 1st edn., Springer Series in Optical Sciences (Springer, London, 2008)

2012

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012).
[CrossRef]

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
[CrossRef]

Y. Urino, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, H. Takahashi, E. Saito, M. Okano, T. Shimizu, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, J. Fujikata, D. Shimura, H. Okayama, H. Yaegashi, T. Tsuchizawa, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, and Y. Arakawa, “Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate,” Opt. Express20(26), B256–B263 (2012).
[CrossRef] [PubMed]

2011

2010

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010).
[CrossRef]

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010).
[CrossRef]

2008

2007

2006

D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express14(22), 10838–10843 (2006).
[CrossRef] [PubMed]

C. C. Welch, A. L. Goodyear, T. Wahlbrink, M. C. Lemme, and T. Mollenhauer, “Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas,” Microelectron. Eng.83(4-9), 1170–1173 (2006).
[CrossRef]

2005

2004

1999

G. K. Celler, D. L. Barr, and J. M. Rosamilia, “Etching of silicon by the RCA standard clean 1,” Electrochem. Solid St.3(1), 47–49 (1999).
[CrossRef]

Adibi, A.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010).
[CrossRef]

Akagawa, T.

Akiyama, S.

Arakawa, Y.

Baba, T.

Baehr-Jones, T.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Baets, R.

Barr, D. L.

G. K. Celler, D. L. Barr, and J. M. Rosamilia, “Etching of silicon by the RCA standard clean 1,” Electrochem. Solid St.3(1), 47–49 (1999).
[CrossRef]

Beckx, S.

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip of future generations of chip multi-processors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

B. A. Small, B. G. Lee, K. Bergman, Q. Xu, and M. Lipson, “Multiple-wavelength integrated photonic networks based on microring resonator devices,” J. Opt. Netw.6(2), 112–120 (2007).
[CrossRef]

Bienstman, P.

Bogaerts, W.

Bolivar, P. H.

Bolten, J.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010).
[CrossRef]

M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16(11), 7693–7702 (2008).
[CrossRef] [PubMed]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip of future generations of chip multi-processors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Cassan, E.

Celler, G. K.

G. K. Celler, D. L. Barr, and J. M. Rosamilia, “Etching of silicon by the RCA standard clean 1,” Electrochem. Solid St.3(1), 47–49 (1999).
[CrossRef]

Chen, L.

Chu, T.

K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
[CrossRef]

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Damlencourt, J. F.

Danziger, S.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Duan, L.

Dumon, P.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Fédéli, J. M.

Först, M.

Fujikata, J.

Goodyear, A. L.

C. C. Welch, A. L. Goodyear, T. Wahlbrink, M. C. Lemme, and T. Mollenhauer, “Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas,” Microelectron. Eng.83(4-9), 1170–1173 (2006).
[CrossRef]

Gottheil, M.

Guo-Qiang, P. L.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Halbwax, M.

Hatori, N.

Henschel, W.

Hirayama, N.

Hochberg, M.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Hofmann, U.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010).
[CrossRef]

Horikawa, T.

Hu, W.

Hu, Y.-T.

K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
[CrossRef]

Imai, M.

Ishizaka, M.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Khan, M. H.

Kim, S.

Kimerling, L. C.

Koo, N.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010).
[CrossRef]

Kurz, H.

Laval, S.

Le Roux, X.

Lee, B. G.

Lemme, M. C.

C. C. Welch, A. L. Goodyear, T. Wahlbrink, M. C. Lemme, and T. Mollenhauer, “Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas,” Microelectron. Eng.83(4-9), 1170–1173 (2006).
[CrossRef]

Li, Q.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010).
[CrossRef]

Li, Z.-Y.

K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
[CrossRef]

Lipson, M.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Liu, X.

Lu, H.

Luyssaert, B.

Lyan, P.

Maine, S.

Mao, D.

Marris-Morini, D.

Miura, M.

Mollenhauer, T.

C. C. Welch, A. L. Goodyear, T. Wahlbrink, M. C. Lemme, and T. Mollenhauer, “Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas,” Microelectron. Eng.83(4-9), 1170–1173 (2006).
[CrossRef]

Mori, M.

Nakamura, T.

Niehusmann, J.

Noguchi, M.

Noguchi, Y.

Nordin, G. P.

Okamoto, D.

Okano, M.

Okayama, H.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Pascal, D.

Pinguet, T.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Plötzing, T.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Prather, D.

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Qi, M.

Qian, Y.

Robinson, J. T.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Rooks, M.

Rosamilia, J. M.

G. K. Celler, D. L. Barr, and J. M. Rosamilia, “Etching of silicon by the RCA standard clean 1,” Electrochem. Solid St.3(1), 47–49 (1999).
[CrossRef]

Saito, E.

Saitou, S.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Sekaric, L.

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip of future generations of chip multi-processors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Shen, H.

Shimizu, T.

Shimura, D.

Small, B. A.

Soltani, M.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010).
[CrossRef]

Song, J.

Sparacin, D. K.

Spector, S. J.

Stammberger, S.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010).
[CrossRef]

Taillaert, D.

Takahashi, H.

Takahashi, M.

Tsuchizawa, T.

Ünal, N.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010).
[CrossRef]

Urino, Y.

Usuki, T.

Van Campenhout, J.

Van Thourhout, D.

Vivien, L.

Vlasov, Y.

Vörckel, A.

Wahlbrink, T.

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010).
[CrossRef]

M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16(11), 7693–7702 (2008).
[CrossRef] [PubMed]

C. C. Welch, A. L. Goodyear, T. Wahlbrink, M. C. Lemme, and T. Mollenhauer, “Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas,” Microelectron. Eng.83(4-9), 1170–1173 (2006).
[CrossRef]

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett.29(24), 2861–2863 (2004).
[CrossRef] [PubMed]

Waldow, M.

Wang, G.

Welch, C. C.

C. C. Welch, A. L. Goodyear, T. Wahlbrink, M. C. Lemme, and T. Mollenhauer, “Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas,” Microelectron. Eng.83(4-9), 1170–1173 (2006).
[CrossRef]

Wiaux, V.

Xia, F.

Xiao, S.

Xiao, X.

K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
[CrossRef]

Xiong, K.

K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
[CrossRef]

Xu, Q.

Yaegashi, H.

Yamada, K.

Yamagishi, M.

Yamamoto, T.

Yegnanarayanan, S.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010).
[CrossRef]

Yu, J.-Z.

K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
[CrossRef]

Yu, Y.-D.

K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
[CrossRef]

Appl. Phys. Lett.

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012).
[CrossRef]

Chin. Phys. B

K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012).
[CrossRef]

Electrochem. Solid St.

G. K. Celler, D. L. Barr, and J. M. Rosamilia, “Etching of silicon by the RCA standard clean 1,” Electrochem. Solid St.3(1), 47–49 (1999).
[CrossRef]

IEEE J. Quantum Electron.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010).
[CrossRef]

IEEE Trans. Comput.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip of future generations of chip multi-processors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Netw.

Microelectron. Eng.

C. C. Welch, A. L. Goodyear, T. Wahlbrink, M. C. Lemme, and T. Mollenhauer, “Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas,” Microelectron. Eng.83(4-9), 1170–1173 (2006).
[CrossRef]

J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010).
[CrossRef]

Nat. Photonics

T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Opt. Express

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express16(1), 334–339 (2008).
[CrossRef] [PubMed]

D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express14(22), 10838–10843 (2006).
[CrossRef] [PubMed]

M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16(11), 7693–7702 (2008).
[CrossRef] [PubMed]

Y. Qian, J. Song, S. Kim, W. Hu, and G. P. Nordin, “Compact waveguide splitter networks,” Opt. Express16(7), 4981–4990 (2008).
[CrossRef] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008).
[CrossRef] [PubMed]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011).
[CrossRef] [PubMed]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14467–14475 (2007).
[CrossRef] [PubMed]

Y. Urino, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, H. Takahashi, E. Saito, M. Okano, T. Shimizu, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, J. Fujikata, D. Shimura, H. Okayama, H. Yaegashi, T. Tsuchizawa, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, and Y. Arakawa, “Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate,” Opt. Express20(26), B256–B263 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Other

M. A. Popovic, T. Barwicz, E. P. Ippen, and F. X. Kartner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Long Beach, CA, 21–26 May 2006, paper CTuCC1.
[CrossRef]

C. Su, H. Ke, and T. Hubing, “Overview of electromagnetic modeling software,” 25th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, CA, 8–13 March 2009.

J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication and Applications, 1st edn., Springer Series in Optical Sciences (Springer, London, 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the investigated directional coupler for ring resonators with the radius R = 10µm: a) top view, b) cross section. The silicon waveguide structures (nSi = 3.50) are enclosed by SiO2 (nSiO2 = 1.45) with the BOX on the bottom and a Cladding on top. The nominal design parameters are: waveguide width wWG = 350nm, gap wGap = 300nm, top silicon thickness hSi = 220nm and slab thickness hSlab = 45nm. The cross section of the waveguide is designed for perfectly rectangular sidewalls with θWG = 90°. The coupling mechanism can be described using the power fed into the coupler via the bus-waveguide PIn and the power transmitted through the bus-waveguide POut.

Fig. 2
Fig. 2

Schematic cross section view of the directional coupler showing the possible deviations of the waveguide shape in this work: a) deviations of the waveguide width ΔWG and the gap ΔGap, b) deviation of the waveguide sidewall angle Δθ with the difference for positive and negative deviations, c) deviation of the slab thickness Δh and d) deviation of the whole waveguide cross section due to etching of the silicon by wet chemical cleaning processes ΔClean.

Fig. 3
Fig. 3

Simulation results for the change of the field transmission factor Δt and the deviation from the calculated nominal value of t = 0.9942 in % as effect of the deviations of the waveguide shape: a) Effect of the waveguide width ΔWG, slab thickness Δh and Cleaning Etch ΔClean, b) Effect of the sidewall angle Δθ.

Fig. 4
Fig. 4

Simulation results for the change of the effective refractive index Δneff and the deviation from the calculated nominal value of neff = 2.517 in % as effect of the deviation of the waveguide shape: a) Effect of the waveguide width ΔWG, slab thickness Δh and Cleaning Etch ΔClean on Δt, b) Effect of the sidewall angle Δθ on Δt.

Fig. 5
Fig. 5

Calculated effects of the investigated deviations of the waveguide shape on the behavior of the ring resonator: a) change of the extinction ratio ΔER and deviation from the calculated nominal value of −19,1dB in %, b) change of the quality-factor ΔQ and deviation from the calculated nominal value of 28724 in %. Both graphs are plotted over the tolerances ΔWG (black), Δh (blue) and ΔClean (green) on the lower x-axis and Δθ (red) on the upper x-axis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t 2 = P Out P In
ER=10log( ( 1τ t 2 ) 2 ( t+τt ) 2 ( tτt ) 2 ( 1+τ t 2 ) 2 )[ dB ]
Q= πL n eff λ 0 ( arccos( 1+ t 4 τ4 t 2 τ 2 t 2 τ ) ) 1
τ=exp(0.5αL)

Metrics