Abstract

Transmission through a subwavelength terahertz fiber, which is positioned in parallel to a frequency selective surface, is studied using several finite element tools. Both the band diagram technique and the port-based scattering matrix technique are used to explain the nature of various resonances in the fiber transmission spectrum. First, we observe that spectral positions of most of the transmission peaks in the port-based simulation can be related to the positions of Van Hove singularities in the band diagram of a corresponding infinite periodic system. Moreover, spectral shape of most of the features in the fiber transmission spectrum can be explained by superposition of several Fano-type resonances. We also show that center frequencies and bandwidths of these resonances and, as a consequence, spectral shape of the resulting transmission features can be tuned by varying the fiber-metamaterial separation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
    [CrossRef]
  2. D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag.51(10), 2713–2722 (2003).
    [CrossRef]
  3. A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B80(24), 245115 (2009).
    [CrossRef]
  4. I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett.98(9), 091107 (2011).
    [CrossRef]
  5. C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98(5), 051109 (2011).
    [CrossRef]
  6. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University, 2008).
  7. J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
    [CrossRef]
  8. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express18(13), 13407–13417 (2010).
    [CrossRef] [PubMed]
  9. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7389–7404 (2000).
    [CrossRef] [PubMed]
  10. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
    [CrossRef]
  11. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
    [CrossRef] [PubMed]
  12. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
    [CrossRef] [PubMed]
  13. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  14. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
    [CrossRef] [PubMed]
  15. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
    [CrossRef]
  16. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express16(16), 12154–12162 (2008).
    [CrossRef] [PubMed]
  17. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
    [CrossRef] [PubMed]
  18. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
    [CrossRef] [PubMed]
  19. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012).
    [CrossRef] [PubMed]
  20. T. Srivastava, R. Das, and R. Jha, “Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguides,” Sens. Actuators B Chem.157(1), 246–252 (2011).
    [CrossRef]
  21. M. Skorobogatiy, Nanostructured and Subwavelength Waveguides (Wiley, 2012).
  22. S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
    [CrossRef]
  23. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  24. M. A. Popovic, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express14(3), 1208–1222 (2006).
    [CrossRef] [PubMed]
  25. H. Haus, W. P. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
    [CrossRef]
  26. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
    [CrossRef] [PubMed]
  27. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
    [CrossRef]

2012 (2)

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

2011 (5)

T. Srivastava, R. Das, and R. Jha, “Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguides,” Sens. Actuators B Chem.157(1), 246–252 (2011).
[CrossRef]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
[CrossRef] [PubMed]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett.98(9), 091107 (2011).
[CrossRef]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98(5), 051109 (2011).
[CrossRef]

2010 (4)

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express18(13), 13407–13417 (2010).
[CrossRef] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

2009 (3)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B80(24), 245115 (2009).
[CrossRef]

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
[CrossRef]

2008 (1)

2006 (2)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

M. A. Popovic, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express14(3), 1208–1222 (2006).
[CrossRef] [PubMed]

2004 (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

2003 (2)

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag.51(10), 2713–2722 (2003).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

2002 (2)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
[CrossRef]

2000 (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

1987 (1)

H. Haus, W. P. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

Al-Naib, I. A. I.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett.98(9), 091107 (2011).
[CrossRef]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98(5), 051109 (2011).
[CrossRef]

Alù, A.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B80(24), 245115 (2009).
[CrossRef]

Atwater, H. A.

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Aydin, K.

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Born, N.

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98(5), 051109 (2011).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett.98(9), 091107 (2011).
[CrossRef]

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Catrysse, P. B.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Consales, M.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Crescitelli, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Cusano, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Cutolo, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Das, R.

T. Srivastava, R. Das, and R. Jha, “Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguides,” Sens. Actuators B Chem.157(1), 246–252 (2011).
[CrossRef]

Decker, M.

Dupuis, A.

Englund, D.

Esposito, E.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Fan, S.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

Fan, S. H.

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
[CrossRef]

Faraon, A.

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Fushman, I.

Han, J.

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
[CrossRef]

Haus, H.

H. Haus, W. P. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

Huang, W. P.

H. Haus, W. P. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

Jansen, C.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett.98(9), 091107 (2011).
[CrossRef]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98(5), 051109 (2011).
[CrossRef]

Jha, R.

T. Srivastava, R. Das, and R. Jha, “Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguides,” Sens. Actuators B Chem.157(1), 246–252 (2011).
[CrossRef]

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Kawakami, S.

H. Haus, W. P. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Koch, M.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett.98(9), 091107 (2011).
[CrossRef]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98(5), 051109 (2011).
[CrossRef]

Lakhtakia, A.

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
[CrossRef]

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Li, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Linden, S.

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Loo, R. Y.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag.51(10), 2713–2722 (2003).
[CrossRef]

Manolatou, C.

Mazhorova, A.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Petroff, P.

Popovic, M. A.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Pryce, I. M.

Ricciardi, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Rozé, M.

Ruan, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Schaffner, J. H.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag.51(10), 2713–2722 (2003).
[CrossRef]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Sievenpiper, D. F.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag.51(10), 2713–2722 (2003).
[CrossRef]

Skorobogatiy, M.

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Song, H. J.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag.51(10), 2713–2722 (2003).
[CrossRef]

Soukoulis, C. M.

Srivastava, T.

T. Srivastava, R. Das, and R. Jha, “Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguides,” Sens. Actuators B Chem.157(1), 246–252 (2011).
[CrossRef]

Stoltz, N.

Suh, W.

Tangonan, G.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag.51(10), 2713–2722 (2003).
[CrossRef]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Ung, B.

Verslegers, L.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Vuckovic, J.

Watts, M. R.

Wegener, M.

Whitaker, N.

H. Haus, W. P. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Yariv, A.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Yu, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Zhao, R.

Zhao, Y.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

ACS Nano (1)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett.98(9), 091107 (2011).
[CrossRef]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98(5), 051109 (2011).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag.51(10), 2713–2722 (2003).
[CrossRef]

J. Lightwave Technol. (1)

H. Haus, W. P. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

J. Mod. Opt. (1)

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Phys. Rev. B (3)

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B80(24), 245115 (2009).
[CrossRef]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Sens. Actuators B Chem. (1)

T. Srivastava, R. Das, and R. Jha, “Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguides,” Sens. Actuators B Chem.157(1), 246–252 (2011).
[CrossRef]

Other (3)

M. Skorobogatiy, Nanostructured and Subwavelength Waveguides (Wiley, 2012).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a unit cell used in simulations. a) side view, b) top view. Unless stated otherwise R = 200 μm, h = 50 μm, Λ = 400 μm, θ = 30°, w = 15 μm and r = 90 μm. c) 3D rendering of a fiber-FSS system featuring 3 transverse and 6 longitudinal periods. d) Linearly polarized (along z) fundamental HE11 mode of a single mode fiber is used as a port condition.

Fig. 2
Fig. 2

Band diagrams for a) fiber-slab system without SRRs, b) fiber-metamaterial system with SRRs. Polarization of some of the modes is indicated as x, or z depending on the leading component of the electric field. Color for each optical state indicates the degree of field localization in the fiber core region.

Fig. 3
Fig. 3

(a) 3D rendering of a supercell used in simulation with Nt = 9 SRRs in the transverse direction and a single period in the longitudinal direction. (b) Transmission through supercells of different width, Nt = 3 (blue), Nt = 9 (yellow) and Nt = 15 (black)

Fig. 4
Fig. 4

Transmission through supercells of different width Nt = 9 (yellow) and Nt = 15 (black) for different values of the subsequatrate material loss (a) no loss, (b) Im(ε) = 0.02i, and (c) Im(ε) = 0.2i.

Fig. 5
Fig. 5

Transmission through a fiber-metamaterial system Nt = 3, Nl = 1, for various fiber-metamaterial separations H = 10µm (blue), H = 50 µm (red), H = 90 µm (green) and H = 130 µm (yellow).

Fig. 6
Fig. 6

(a) Changes in the transmission peak located at ~240 GHz as a function of the fiber-metamaterial separation H. (b) Changes in the peak position (zero transmission) and peak width are fitted very well with exponential dependence on H. (c) Electric field distribution at the frequency of zero transmission, and (d) at the frequency of maximal transmission.

Fig. 7
Fig. 7

Fiber transmission spectrum for fiber-metamaterial system with Nl = 10 periods. Dotted vertical lines indicate spectral position of the Van Hove singularities as found from Fig. 2(b).

Fig. 8
Fig. 8

Fiber transmission spectra for various numbers of SRR periods in the fiber-metamaterial coupler in the vicinity of a peak at ~249 GHz: (a) Nl = 1-7. (b) Nl = 8-11. Circles indicate numerical calculations, while solid lines are analytical fits using a single Fano line shape (13). (Exceptionally, data for Nl = 10 is fitted using two Fano resonances).

Fig. 9
Fig. 9

Peak amplitude a (blue), peak bandwidth Γ Φ (red), and peak asymmetry q (green) obtained from fitting the resonant line shape near 249 GHz (see Fig. 8) with Fano line shape.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

| t | 2 (f)= σ t (f) 2 1+ σ t (f) 2 .
σ t (f) 1 = j σ j (f) 1 ,
σ j (f)= ( f f j ) / γ j ,
( t(f) 0 )=M(f)( 1 r(f) ),
T= j=1 N r ( 1 i γ j f f j +i Γ j i γ j f f j +i Γ j i γ j f f j +i Γ j 1+ i γ j f f j +i Γ j ) .
| t | 2 (f)= (f f 0 ) 2 + Γ 2 (f f 0 ) 2 + (γ+Γ) 2 ,
| t | min 2 Γ 2 / γ 2 .
t(f)= (f f 1 +i Γ 1 )(f f 2 +i Γ 2 ) (f f 2 +i( Γ 2 + γ 2 ))(f f 1 +i( Γ 1 + γ 1 ))+ γ 1 γ 2 .
| t | max 2 12 ( γ 1 + γ 2 ) 2 ( f 1 f 2 ) 2 ( Γ 1 γ 1 + Γ 2 γ 2 ).
| t | min,1,2 2 Γ 1,2 2 / γ 1,2 2 .
| t | 2 (f)= 1 1+ q 2 (q Γ Φ +f f Φ ) 2 Γ Φ 2 + (f f Φ ) 2 ,
q= γ 1 f 1 f 2 , Γ Φ = γ 2 1+ q 2 , f Φ = f 2 +q Γ Φ .
f r ( H )= f 0 + Δ f r exp( H/ H f ), γ r ( H )=Δ γ r exp( H/ H γ )
| t | 2 (f)= a 1+ q 2 (q Γ Φ +f f Φ ) 2 Γ Φ 2 + (f f Φ ) 2 +c.

Metrics