Abstract

We demonstrate a Brillouin optical time domain analysis sensor based on a phase-modulated probe wave and RF demodulation that provides measurements tolerant to frequency-dependent variations of the pump pulse power induced by non-local effects. The tolerance to non-local effects is based on the special characteristics of the detection process, which provides an RF phase-shift signal that is largely independent of the Brillouin gain magnitude. Proof-of-concept experiments performed over a 20-km-long fiber demonstrate that the measured RF phase-shift spectrum remains unaltered for large frequency-dependent deformations of the pump pulse power. Therefore, it allows the use of a higher optical power of the probe wave, which leads to an enhancement of the detected signal to noise ratio. This can be used to extend the sensing distance, to improve the accuracy of the Brillouin frequency shift measurements, and to reduce the measurement time.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF with 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett.24(20), 1823–1826 (2012).
    [CrossRef]
  2. X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express20(11), 12147–12154 (2012).
    [CrossRef] [PubMed]
  3. L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE7753, 775322 (2011).
    [CrossRef]
  4. Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Appl. Opt.49(27), 5020–5025 (2010).
    [CrossRef] [PubMed]
  5. A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
    [CrossRef]
  6. R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
    [CrossRef] [PubMed]
  7. A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA,” J. Lightwave Technol.30(8), 1066–1072 (2012).
    [CrossRef]
  8. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express20(24), 26942–26949 (2012).
    [CrossRef] [PubMed]
  9. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev.6(5), L1–L5 (2012).
    [CrossRef]
  10. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-Proposal, experiment and simulation,” IEICE Trans. Electron. E83, 405–411 (2000).
  11. A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
    [CrossRef]
  12. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  13. M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity noise induced by Stokes and Anti-stokes Brillouin Scattering in Single-Mode fibers,” IEEE Photon. Technol. Lett.9(1), 124–126 (1997).
    [CrossRef]

2012

2011

L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE7753, 775322 (2011).
[CrossRef]

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

2010

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
[CrossRef]

Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Appl. Opt.49(27), 5020–5025 (2010).
[CrossRef] [PubMed]

2008

2005

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

2000

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-Proposal, experiment and simulation,” IEICE Trans. Electron. E83, 405–411 (2000).

1997

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity noise induced by Stokes and Anti-stokes Brillouin Scattering in Single-Mode fibers,” IEEE Photon. Technol. Lett.9(1), 124–126 (1997).
[CrossRef]

Angulo-Vinuesa, X.

Antman, Y.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev.6(5), L1–L5 (2012).
[CrossRef]

Bao, X.

Bernini, R.

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Bolognini, G.

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF with 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Chen, L.

Chraplyvy, A. R.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity noise induced by Stokes and Anti-stokes Brillouin Scattering in Single-Mode fibers,” IEEE Photon. Technol. Lett.9(1), 124–126 (1997).
[CrossRef]

Corredera, P.

Denisov, A.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev.6(5), L1–L5 (2012).
[CrossRef]

Di Pasquale, F.

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF with 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

Dong, Y.

Foaleng Mafang, S.

L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE7753, 775322 (2011).
[CrossRef]

Gonzalez-Herraez, M.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-Proposal, experiment and simulation,” IEICE Trans. Electron. E83, 405–411 (2000).

Horowitz, M.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity noise induced by Stokes and Anti-stokes Brillouin Scattering in Single-Mode fibers,” IEEE Photon. Technol. Lett.9(1), 124–126 (1997).
[CrossRef]

Hotate, K.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-Proposal, experiment and simulation,” IEICE Trans. Electron. E83, 405–411 (2000).

Li, W.

Li, Y.

Lin, J.

L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE7753, 775322 (2011).
[CrossRef]

Loayssa, A.

Martin-Lopez, S.

Minardo, A.

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Olier, D.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
[CrossRef]

Primerov, N.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev.6(5), L1–L5 (2012).
[CrossRef]

Sagues, M.

Sancho, J.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev.6(5), L1–L5 (2012).
[CrossRef]

Soto, M. A.

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF with 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

Taki, M.

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF with 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

Thévenaz, L.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev.6(5), L1–L5 (2012).
[CrossRef]

L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE7753, 775322 (2011).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Tkach, R. W.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity noise induced by Stokes and Anti-stokes Brillouin Scattering in Single-Mode fibers,” IEEE Photon. Technol. Lett.9(1), 124–126 (1997).
[CrossRef]

Urricelqui, J.

Zadok, A.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev.6(5), L1–L5 (2012).
[CrossRef]

Zeni, L.

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Zornoza, A.

Zyskind, J. L.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity noise induced by Stokes and Anti-stokes Brillouin Scattering in Single-Mode fibers,” IEEE Photon. Technol. Lett.9(1), 124–126 (1997).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-Coded BOTDA Sensor Over 120-km SMF with 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photon. Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity noise induced by Stokes and Anti-stokes Brillouin Scattering in Single-Mode fibers,” IEEE Photon. Technol. Lett.9(1), 124–126 (1997).
[CrossRef]

IEICE Trans. Electron. E

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-Proposal, experiment and simulation,” IEICE Trans. Electron. E83, 405–411 (2000).

J. Lightwave Technol.

Laser Photon. Rev.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev.6(5), L1–L5 (2012).
[CrossRef]

Meas. Sci. Technol.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Opt. Express

Proc. SPIE

L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE7753, 775322 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of the amplification of the pump pulse along its propagation at a conventional loss-based BOTDA sensor.

Fig. 2
Fig. 2

Schematic representation of SBS interaction and the received RF signal.

Fig. 3
Fig. 3

Normalized pump pulse power as a function of the frequency difference between pump and probe waves, for several probe wave optical powers. A Brillouin interaction with a linewidth equal to 30MHz has been assumed.

Fig. 4
Fig. 4

Calculated (a) amplitude spectra for a conventional loss-based BOTDA and (b) RF phase-shift spectra of the proposed technique for different probe wave powers, at the last section of the fiber.

Fig. 5
Fig. 5

Experimental setup for the BOTDA sensor based on phase-modulated probe wave and RF demodulation.

Fig. 6
Fig. 6

(a) Measured pulses for different probe wave optical powers (blue solid line 0.67mW, red long-dashed line 0.56mW, green short-dashed line 0.47mW and orange dashed-dot line 0.37mW) and without Brillouin interaction (black dashed-dot-dot line). (b) Measured pump pulse energy at the end of the fiber for several probe wave powers (blue circle symbol 0.67mW, red triangle symbol 0.56mW, green square symbol 0.47mW and orange diamond symbol 0.37mW) and without Brillouin interaction (black cross symbol).

Fig. 7
Fig. 7

Measured amplitude of a BOTDA trace at Δν = 0 MHz (blue solid line) and theoretical BOTDA trace not affected by pump wave amplification (black dashed line).

Fig. 8
Fig. 8

Measured (a) RF phase-shift spectra and (b) amplitude spectra for different optical powers of the probe wave (blue solid line 0.67mW, red long dashed line 0.56mW, green short dashed line 0.47mW and orange dashed-dot line 0.37mW) at the heated section with a 30°C temperature difference from the rest of the fiber.

Fig. 9
Fig. 9

Measured (a) RF phase-shift spectra and (b) amplitude spectra injecting a 0.67mW probe wave power into the fiber for different temperatures at the climatic chamber from 24°C (blue solid line) to 54°C (black short-long dashed line) in 5°C steps.

Fig. 10
Fig. 10

BFS measurement given by the amplitude spectra (red triangle symbol) and by the RF phase-shift spectra (blue circle symbol). The linear regression to the BFS data obtained from the RF phase-shift (black solid line) gives a 1.08°C/MHz coefficient.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(t)= E SB exp(j2π( ν 0 f RF )t)+ E 0 exp(j2π ν 0 t) + E SB exp(j2π( ν 0 + f RF )t) H SBS ( ν 0 + f RF ,z)
H SBS ( ν,z )=exp( g 0 Δ ν B Δ ν B +2j( ν+ ν P ν B ( z ) ) )
I| f RF = R D P 0 P SB ( H SBS ( ν 0 + f RF ,z )1 ) R D g 0 P 0 P SB Δ ν B Δ ν B 2 +4Δ ν 2 exp( jarctan( 2 Δν Δ ν B ) )

Metrics