Abstract

We demonstrate for the first time, a portable multimodal coherent anti-Stokes Raman scattering microscope (exoscope) for minimally invasive in-vivo imaging of tissues. This device is based around a micro-electromechanical system scanning mirror and miniaturized optics with light delivery accomplished by a photonic crystal fibre. A single Ti:sapphire femtosecond pulsed laser is used as the light source to produce CARS, two photon excitation fluorescence and second harmonic generation images. The high resolution and distortion-free images obtained from various resolution and bio-samples, particularly in backward direction (epi) successfully demonstrate proof of concept, and pave the path towards future non or minimally-invasive in vivo imaging.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 883–909 (2008).
    [CrossRef] [PubMed]
  2. T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9:42 (2009). BMC Cancer9(1), 42 (2009), doi:.
    [CrossRef]
  3. E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006).
    [CrossRef] [PubMed]
  4. X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
    [CrossRef] [PubMed]
  5. Y. Fu, T. B. Huff, H. W. Wang, H. Wang, and J. X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008).
    [CrossRef] [PubMed]
  6. Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85(13), 2870–2881 (2007).
    [CrossRef] [PubMed]
  7. H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt.11(5), 050502-1– 050502-3 (2006).
  8. +T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. of Biomedical Opt.12 (5), 054007–1–054007–10 (2007).
  9. Y. M. Wu, H. C. Chen, W. T. Chang, J. W. Jhan, H. L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.81(4), 1496–1504 (2009).
    [CrossRef] [PubMed]
  10. H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
    [CrossRef]
  11. A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
    [CrossRef] [PubMed]
  12. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express17(3), 1282–1290 (2009).
    [CrossRef] [PubMed]
  13. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron31(6), 903–912 (2001).
    [CrossRef] [PubMed]
  14. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 microm x 475 microm field of view for in vivo imaging,” Opt. Lett.33(12), 1333–1335 (2008).
    [CrossRef] [PubMed]
  15. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008).
    [CrossRef] [PubMed]
  16. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009).
    [CrossRef] [PubMed]
  17. J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
    [CrossRef] [PubMed]
  18. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18(2), 1255–1260 (2010).
    [CrossRef] [PubMed]
  19. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express14(10), 4427–4432 (2006).
    [CrossRef] [PubMed]
  20. F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-Hogiu, and L. Marcu, “Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy,” J Biophotonics5(1), 14–19 (2012).
    [CrossRef] [PubMed]
  21. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011).
    [CrossRef] [PubMed]
  22. M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:.
    [CrossRef]
  23. H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett.31(10), 1417–1419 (2006).
    [CrossRef] [PubMed]
  24. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388 (2010).
    [CrossRef] [PubMed]
  25. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010).
    [CrossRef]
  26. P. S. Hsu, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Single-shot thermometry using fiber-based picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy,” J. Raman Spectro. (2013).
    [CrossRef]
  27. Z. Wang, L. Gao, P. Luo, Y. Yang, A. A. Hammoudi, K. K. Wong, and S. T. C. Wong, “Use of multimode optical fibers for fiber-based coherent anti-Stokes Raman scattering microendoscopy imaging,” Opt. Express19(9), 7960–7970 (2011).
    [CrossRef] [PubMed]
  28. B. G. Saar, R. S. Johnston, C. W. Freudiger, X. S. Xie, and E. J. Seibel, “Coherent Raman scanning fiber endoscopy,” Opt. Lett.36(13), 2396–2398 (2011).
    [CrossRef] [PubMed]
  29. S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express18(23), 23796–23804 (2010).
    [CrossRef] [PubMed]
  30. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express17(23), 20700–20706 (2009).
    [CrossRef] [PubMed]
  31. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express15(21), 14028–14037 (2007).
    [CrossRef] [PubMed]
  32. A. F. Pegoraro, A. D. Slepkov, A. Risdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophot. (2012).
    [CrossRef]
  33. K. J. Bock, H. E. Kotb, M. A. Abdelaim, and H. Anis, “Increasing energy in an ytterbium femtosecond fiber laser with a longer gain medium and lower doping,” Proc. SPIE8237, 823731-1–823731-7 (2012), doi:.
    [CrossRef]

2013

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

P. S. Hsu, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Single-shot thermometry using fiber-based picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy,” J. Raman Spectro. (2013).
[CrossRef]

2012

A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
[CrossRef] [PubMed]

F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-Hogiu, and L. Marcu, “Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy,” J Biophotonics5(1), 14–19 (2012).
[CrossRef] [PubMed]

M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:.
[CrossRef]

A. F. Pegoraro, A. D. Slepkov, A. Risdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophot. (2012).
[CrossRef]

K. J. Bock, H. E. Kotb, M. A. Abdelaim, and H. Anis, “Increasing energy in an ytterbium femtosecond fiber laser with a longer gain medium and lower doping,” Proc. SPIE8237, 823731-1–823731-7 (2012), doi:.
[CrossRef]

2011

2010

H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18(2), 1255–1260 (2010).
[CrossRef] [PubMed]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388 (2010).
[CrossRef] [PubMed]

S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express18(23), 23796–23804 (2010).
[CrossRef] [PubMed]

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010).
[CrossRef]

2009

2008

2007

+T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. of Biomedical Opt.12 (5), 054007–1–054007–10 (2007).

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85(13), 2870–2881 (2007).
[CrossRef] [PubMed]

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express15(21), 14028–14037 (2007).
[CrossRef] [PubMed]

2006

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt.11(5), 050502-1– 050502-3 (2006).

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett.31(10), 1417–1419 (2006).
[CrossRef] [PubMed]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express14(10), 4427–4432 (2006).
[CrossRef] [PubMed]

2003

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

2001

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron31(6), 903–912 (2001).
[CrossRef] [PubMed]

Abdelaim, M. A.

K. J. Bock, H. E. Kotb, M. A. Abdelaim, and H. Anis, “Increasing energy in an ytterbium femtosecond fiber laser with a longer gain medium and lower doping,” Proc. SPIE8237, 823731-1–823731-7 (2012), doi:.
[CrossRef]

Allen, J.

Anis, H.

Balu, M.

Bao, H.

Barretto, R. P.

Bock, K. J.

K. J. Bock, H. E. Kotb, M. A. Abdelaim, and H. Anis, “Increasing energy in an ytterbium femtosecond fiber laser with a longer gain medium and lower doping,” Proc. SPIE8237, 823731-1–823731-7 (2012), doi:.
[CrossRef]

Bonn, M.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt.11(5), 050502-1– 050502-3 (2006).

Boussioutas, A.

Breunig, H. G.

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:.
[CrossRef]

Brideau, C.

Brown, C. M.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Bückle, R.

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:.
[CrossRef]

Buhman, K. K.

Burns, L. D.

Chang, W. T.

Y. M. Wu, H. C. Chen, W. T. Chang, J. W. Jhan, H. L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.81(4), 1496–1504 (2009).
[CrossRef] [PubMed]

Chen, H.

Chen, H. C.

Y. M. Wu, H. C. Chen, W. T. Chang, J. W. Jhan, H. L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.81(4), 1496–1504 (2009).
[CrossRef] [PubMed]

Chen, Z.

Cheng, J. X.

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express17(3), 1282–1290 (2009).
[CrossRef] [PubMed]

T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9:42 (2009). BMC Cancer9(1), 42 (2009), doi:.
[CrossRef]

Y. Fu, T. B. Huff, H. W. Wang, H. Wang, and J. X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008).
[CrossRef] [PubMed]

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85(13), 2870–2881 (2007).
[CrossRef] [PubMed]

+T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. of Biomedical Opt.12 (5), 054007–1–054007–10 (2007).

H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett.31(10), 1417–1419 (2006).
[CrossRef] [PubMed]

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006).
[CrossRef] [PubMed]

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Cocker, E. D.

Contag, C. H.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

Darvin, M. E.

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

Denk, W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron31(6), 903–912 (2001).
[CrossRef] [PubMed]

Dong, L.

Engelbrecht, C. J.

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef] [PubMed]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express14(10), 4427–4432 (2006).
[CrossRef] [PubMed]

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron31(6), 903–912 (2001).
[CrossRef] [PubMed]

Fermann, M. E.

Fischer, P.

M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:.
[CrossRef]

Freudiger, C. W.

Fu, L.

Fu, Y.

Y. Fu, T. B. Huff, H. W. Wang, H. Wang, and J. X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008).
[CrossRef] [PubMed]

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85(13), 2870–2881 (2007).
[CrossRef] [PubMed]

Ganikhanov, F.

Gao, L.

Gord, J. R.

P. S. Hsu, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Single-shot thermometry using fiber-based picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy,” J. Raman Spectro. (2013).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010).
[CrossRef]

Gu, M.

Haeberle, H.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

Hammoudi, A. A.

Helmchen, F.

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008).
[CrossRef] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron31(6), 903–912 (2001).
[CrossRef] [PubMed]

Hsu, P. S.

P. S. Hsu, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Single-shot thermometry using fiber-based picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy,” J. Raman Spectro. (2013).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010).
[CrossRef]

Huff, T. B.

T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9:42 (2009). BMC Cancer9(1), 42 (2009), doi:.
[CrossRef]

Y. Fu, T. B. Huff, H. W. Wang, H. Wang, and J. X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008).
[CrossRef] [PubMed]

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85(13), 2870–2881 (2007).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett.31(10), 1417–1419 (2006).
[CrossRef] [PubMed]

Jacobs, K.

A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
[CrossRef] [PubMed]

Jeremy, R.

Jhan, J. W.

Y. M. Wu, H. C. Chen, W. T. Chang, J. W. Jhan, H. L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.81(4), 1496–1504 (2009).
[CrossRef] [PubMed]

Johnston, R. S.

Jung, J. C.

Jung, Y.

Kang, E.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006).
[CrossRef] [PubMed]

Kellner-Höfer, M.

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:.
[CrossRef]

Kino, G. S.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

Knorr, F.

F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-Hogiu, and L. Marcu, “Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy,” J Biophotonics5(1), 14–19 (2012).
[CrossRef] [PubMed]

Kobat, D.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

König, K.

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
[CrossRef] [PubMed]

M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:.
[CrossRef]

Kotb, H. E.

K. J. Bock, H. E. Kotb, M. A. Abdelaim, and H. Anis, “Increasing energy in an ytterbium femtosecond fiber laser with a longer gain medium and lower doping,” Proc. SPIE8237, 823731-1–823731-7 (2012), doi:.
[CrossRef]

Kulatilaka, W. D.

P. S. Hsu, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Single-shot thermometry using fiber-based picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy,” J. Raman Spectro. (2013).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010).
[CrossRef]

Kwon, I. K.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006).
[CrossRef] [PubMed]

Lademann, J.

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

Langohr, I. M.

+T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. of Biomedical Opt.12 (5), 054007–1–054007–10 (2007).

Le, T. T.

T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9:42 (2009). BMC Cancer9(1), 42 (2009), doi:.
[CrossRef]

+T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. of Biomedical Opt.12 (5), 054007–1–054007–10 (2007).

Légaré, F.

Lemke, C.

A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
[CrossRef] [PubMed]

Lessel, M.

A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
[CrossRef] [PubMed]

Liau, I.

Y. M. Wu, H. C. Chen, W. T. Chang, J. W. Jhan, H. L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.81(4), 1496–1504 (2009).
[CrossRef] [PubMed]

Lin, H. L.

Y. M. Wu, H. C. Chen, W. T. Chang, J. W. Jhan, H. L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.81(4), 1496–1504 (2009).
[CrossRef] [PubMed]

Liu, G.

Liu, J.

F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-Hogiu, and L. Marcu, “Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy,” J Biophotonics5(1), 14–19 (2012).
[CrossRef] [PubMed]

Liu, J. T. C.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

Locker, M. J.

+T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. of Biomedical Opt.12 (5), 054007–1–054007–10 (2007).

Loewke, N. O.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

Luo, P.

Mandella, M. J.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

Marcu, L.

F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-Hogiu, and L. Marcu, “Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy,” J Biophotonics5(1), 14–19 (2012).
[CrossRef] [PubMed]

Meyer, T. R.

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010).
[CrossRef]

Moffatt, D. J.

A. F. Pegoraro, A. D. Slepkov, A. Risdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophot. (2012).
[CrossRef]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

Moica, A.

Müller, M.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt.11(5), 050502-1– 050502-3 (2006).

Murugkar, S.

Naji, M.

Nan, X.

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Nietzsche, S.

A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
[CrossRef] [PubMed]

Ouzounov, D. G.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Park, K.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006).
[CrossRef] [PubMed]

Patnaik, A. K.

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010).
[CrossRef]

Pattie, R.

Pavlova, I.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Pegoraro, A. F.

A. F. Pegoraro, A. D. Slepkov, A. Risdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophot. (2012).
[CrossRef]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

Pezacki, J. P.

Piyawattanametha, W.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

Potma, E. O.

Ra, H.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

Ridsdale, A.

Rinia, H. A.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt.11(5), 050502-1– 050502-3 (2006).

Risdale, A.

A. F. Pegoraro, A. D. Slepkov, A. Risdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophot. (2012).
[CrossRef]

Rivera, D. R.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Robinson, J.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006).
[CrossRef] [PubMed]

Roy, S.

P. S. Hsu, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Single-shot thermometry using fiber-based picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy,” J. Raman Spectro. (2013).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010).
[CrossRef]

Russell, S.

Saar, B. G.

Schaffer, C. B.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt.11(5), 050502-1– 050502-3 (2006).

Schnitzer, M. J.

Seibel, E. J.

Shi, R.

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85(13), 2870–2881 (2007).
[CrossRef] [PubMed]

Shi, Y.

Slepkov, A. D.

A. F. Pegoraro, A. D. Slepkov, A. Risdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophot. (2012).
[CrossRef]

Slipchenko, M. N.

Smith, B.

Solgaard, O.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

Srivastava, P.

Sterry, W.

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

Stolow, A.

A. F. Pegoraro, A. D. Slepkov, A. Risdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophot. (2012).
[CrossRef]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

Sturek, M.

+T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. of Biomedical Opt.12 (5), 054007–1–054007–10 (2007).

Stys, P. K.

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron31(6), 903–912 (2001).
[CrossRef] [PubMed]

Thomas, B. K.

Tromberg, B. J.

Uchugonova, A.

A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
[CrossRef] [PubMed]

Vance, R.

Vartiainen, E. M.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt.11(5), 050502-1– 050502-3 (2006).

Wachsmann-Hogiu, S.

F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-Hogiu, and L. Marcu, “Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy,” J Biophotonics5(1), 14–19 (2012).
[CrossRef] [PubMed]

Wang, H.

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express17(3), 1282–1290 (2009).
[CrossRef] [PubMed]

Y. Fu, T. B. Huff, H. W. Wang, H. Wang, and J. X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008).
[CrossRef] [PubMed]

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85(13), 2870–2881 (2007).
[CrossRef] [PubMed]

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett.31(10), 1417–1419 (2006).
[CrossRef] [PubMed]

Wang, H. W.

Wang, Z.

Webb, W. W.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Weinigel, M.

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:.
[CrossRef]

Wong, K. K.

Wong, S. T. C.

Wu, Y. M.

Y. M. Wu, H. C. Chen, W. T. Chang, J. W. Jhan, H. L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.81(4), 1496–1504 (2009).
[CrossRef] [PubMed]

Xie, X. S.

B. G. Saar, R. S. Johnston, C. W. Freudiger, X. S. Xie, and E. J. Seibel, “Coherent Raman scanning fiber endoscopy,” Opt. Lett.36(13), 2396–2398 (2011).
[CrossRef] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef] [PubMed]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express14(10), 4427–4432 (2006).
[CrossRef] [PubMed]

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Xu, C.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Yang, Y.

Yankelevich, D. R.

F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-Hogiu, and L. Marcu, “Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy,” J Biophotonics5(1), 14–19 (2012).
[CrossRef] [PubMed]

Zeitz, C.

A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
[CrossRef] [PubMed]

Zhu, J.

Anal. Chem.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006).
[CrossRef] [PubMed]

Y. M. Wu, H. C. Chen, W. T. Chang, J. W. Jhan, H. L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.81(4), 1496–1504 (2009).
[CrossRef] [PubMed]

Annu Rev Anal Chem (Palo Alto Calif)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef] [PubMed]

BMC Cancer

T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9:42 (2009). BMC Cancer9(1), 42 (2009), doi:.
[CrossRef]

Exp. Fluids

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010).
[CrossRef]

J Biophotonics

F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-Hogiu, and L. Marcu, “Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy,” J Biophotonics5(1), 14–19 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012).
[CrossRef] [PubMed]

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010).
[CrossRef] [PubMed]

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt.11(5), 050502-1– 050502-3 (2006).

J. Biophot.

A. F. Pegoraro, A. D. Slepkov, A. Risdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophot. (2012).
[CrossRef]

J. Lipid Res.

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

J. Neurosci. Res.

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85(13), 2870–2881 (2007).
[CrossRef] [PubMed]

J. of Biomedical Opt.

+T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. of Biomedical Opt.12 (5), 054007–1–054007–10 (2007).

J. Raman Spectro

P. S. Hsu, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Single-shot thermometry using fiber-based picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy,” J. Raman Spectro. (2013).
[CrossRef]

Laser Phys. Lett.

H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013).
[CrossRef]

Neuron

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron31(6), 903–912 (2001).
[CrossRef] [PubMed]

Opt. Express

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express14(10), 4427–4432 (2006).
[CrossRef] [PubMed]

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express15(21), 14028–14037 (2007).
[CrossRef] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express17(23), 20700–20706 (2009).
[CrossRef] [PubMed]

H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18(2), 1255–1260 (2010).
[CrossRef] [PubMed]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388 (2010).
[CrossRef] [PubMed]

S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express18(23), 23796–23804 (2010).
[CrossRef] [PubMed]

Z. Wang, L. Gao, P. Luo, Y. Yang, A. A. Hammoudi, K. K. Wong, and S. T. C. Wong, “Use of multimode optical fibers for fiber-based coherent anti-Stokes Raman scattering microendoscopy imaging,” Opt. Express19(9), 7960–7970 (2011).
[CrossRef] [PubMed]

Y. Fu, T. B. Huff, H. W. Wang, H. Wang, and J. X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008).
[CrossRef] [PubMed]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express17(3), 1282–1290 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Proc. SPIE

M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:.
[CrossRef]

K. J. Bock, H. E. Kotb, M. A. Abdelaim, and H. Anis, “Increasing energy in an ytterbium femtosecond fiber laser with a longer gain medium and lower doping,” Proc. SPIE8237, 823731-1–823731-7 (2012), doi:.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Portability demonstration of the exoscope (b) Schematic of the experimental setup for the multimodal CARS imaging using the exoscope in (a). Various components are as follows: (1) Titanium sapphire laser source (2) Isolator (3) Half wave plate (4) Polarizing beam splitters (5) Prism compressor (6) 40X microscope objective lens (7) Supercontinuum generation PCF (8) Aspheric 5 mm focal length lens (9) 1040 nm central wavelength band-pass filter (10) Grating compressor (11) Short pass dichroic mirror (12) 5X microscope objective lens (13) LMA 20 PCF (14) Exoscope (15) 40X water immersion lens (16) Multimode collection fibre (17) Short-pass Filter (18) Hamamatsu PMT (19) Discriminator and field programmable gate array.

Fig. 2
Fig. 2

(a). Optical ray diagram of the exoscope featuring the lenses and scanning mechanism. (b). Computer-aided design SolidWorks image of the miniaturized multimodal CARS exoscope model including (1) the barrel of the exoscope (2) the body of the exoscope.

Fig. 3
Fig. 3

Non-resonant FWM spectrum out of the LMA-20 VS the output spectrum of the exoscope (both with temporal overlap of pump and Stokes). The lack of the FWM signal at ~635 nm demonstrates the effectiveness of the internal dichroic mirror.

Fig. 4
Fig. 4

Transmission image of the USAF target captured in the forward direction: The line spacing of this element is 228 line pairs per mm, which results in a 2.18 µm separation distance between lines and a calibration value of 0.118 µm per pixel.

Fig. 5
Fig. 5

(a) TPEF excitation of 1.0 µm Fluorescebrite microspheres in the epi direction. (b) Lateral intensity profile of a single 1.0 µm Fluorescebrite microsphere. (c) Axial profile the same bead.

Fig. 6
Fig. 6

(a) CARS-excited 2.0 µm polystyrene microspheres in the epi direction. (b) Lateral profile curve (c) Axial profile curve.

Fig. 7
Fig. 7

(a) Epi - Fluorescein stained mouse lung tissue. (b) Epi - SHG image of KDP crystal. (c) For comparison: White light transmission microscopic image of KDP crystal at 100X magnification.

Fig. 8
Fig. 8

(a) Epi – CARS image from unlabeled mouse sciatic nerve, showing a few axons in the field of view. (b) Epi image of the same region demonstrated in (a), with the Stokes beam blocked. (c) Epi-CARS image of fat cells surrounding the sciatic nerve. (d) Epi image of the same region demonstrated in (c) with the Stokes beam blocked.

Metrics