Abstract

We study numerically depressed-index cladding, buried, micro-structured optical waveguides that can be formed in a lithium niobate crystal by femtosecond laser writing. We demonstrate to which extent the waveguiding properties can be controlled by the waveguide geometry at the relatively moderate induced refractive index contrasts that are typical of the direct femtosecond inscription.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer-Verlag, 2003).
    [CrossRef]
  2. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
    [CrossRef]
  3. R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag, 2012).
    [CrossRef]
  4. A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE4941, 51–57 (2003).
    [CrossRef]
  5. I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005), http://www.google.com/patents/WO2005040874A2 .
  6. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250, (2005).
    [CrossRef] [PubMed]
  7. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007).
    [CrossRef]
  8. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A86, 165–170 (2007).
    [CrossRef]
  9. S. Campbell, R. R. Thomson, D. P. Hand, A. K. Kar, D. T. Reid, C. Canalias, V. Pasiskevicius, and F. Laurell, “Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides,” Opt. Express15, 17146–17150 (2007).
    [CrossRef] [PubMed]
  10. Q. An, Y. Ren, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express, 3, 466–471 (2013).
    [CrossRef]
  11. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser & Photon. Rev. doi: (2013).
    [CrossRef]
  12. S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
    [CrossRef]
  13. S. Juodkazis and H. Misawa, “Laser processing of sapphire by strongly focused femtosecond pulses,” Appl. Phys. A93, 857–861 (2008).
    [CrossRef]
  14. R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007).
    [CrossRef]
  15. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
    [CrossRef] [PubMed]
  16. A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
    [CrossRef]
  17. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20, 3832–3843 (2012).
    [CrossRef] [PubMed]
  18. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A89, 127–132 (2007).
    [CrossRef]
  19. L. Dong, W. Wong, and M. E. Fermann, “Single mode propagation in fibers and rods with large leakage channels,” Patent US 2013/0089113 A1 (2013), http://www.google.co.uk/patents/US7787729 .
  20. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefriengent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: Rapid Research Lett.6, 306–308 (2012).
    [CrossRef]
  21. Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012).
    [CrossRef]
  22. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).
  23. T. P. White, R. C. McPhedran, C. M. de Sterke, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett.26, 488–490 (2001).
    [CrossRef]
  24. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflatteend chromatic dispersion with low losses,” Opt. Lett.28, 989–991 (2003).
    [CrossRef] [PubMed]
  25. A. V. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
    [CrossRef]
  26. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, 2005).
  27. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B14, 3319–3322 (1997).
    [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 1989).
  29. Y. Tsuji and M. Koshiba, “Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,” J. Lightwave Technol.18618–623 (2000).
    [CrossRef]
  30. A. Oskooi and S. G. Johnson, “Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media,” J. Comput. Phys.230, 2369–2377 (2011).
    [CrossRef]

2013

Q. An, Y. Ren, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express, 3, 466–471 (2013).
[CrossRef]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser & Photon. Rev. doi: (2013).
[CrossRef]

2012

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20, 3832–3843 (2012).
[CrossRef] [PubMed]

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefriengent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: Rapid Research Lett.6, 306–308 (2012).
[CrossRef]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012).
[CrossRef]

2011

A. V. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

A. Oskooi and S. G. Johnson, “Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media,” J. Comput. Phys.230, 2369–2377 (2011).
[CrossRef]

2010

2009

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

2008

S. Juodkazis and H. Misawa, “Laser processing of sapphire by strongly focused femtosecond pulses,” Appl. Phys. A93, 857–861 (2008).
[CrossRef]

2007

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A86, 165–170 (2007).
[CrossRef]

S. Campbell, R. R. Thomson, D. P. Hand, A. K. Kar, D. T. Reid, C. Canalias, V. Pasiskevicius, and F. Laurell, “Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides,” Opt. Express15, 17146–17150 (2007).
[CrossRef] [PubMed]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A89, 127–132 (2007).
[CrossRef]

2006

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

2005

2003

G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflatteend chromatic dispersion with low losses,” Opt. Lett.28, 989–991 (2003).
[CrossRef] [PubMed]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE4941, 51–57 (2003).
[CrossRef]

2001

2000

1997

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 1989).

Allsop, T.

An, Q.

Ancona, A.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007).
[CrossRef]

Apolonski, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007).
[CrossRef]

Argyros, A.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).

Bennion, I.

Brueckner, H. J.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007).
[CrossRef]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A89, 127–132 (2007).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A86, 165–170 (2007).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Campbell, S.

Canalias, C.

Chen, F.

Q. An, Y. Ren, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express, 3, 466–471 (2013).
[CrossRef]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser & Photon. Rev. doi: (2013).
[CrossRef]

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefriengent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: Rapid Research Lett.6, 306–308 (2012).
[CrossRef]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012).
[CrossRef]

Chichkov, B. N.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007).
[CrossRef]

de Sterke, C. M.

Dong, N.

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefriengent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: Rapid Research Lett.6, 306–308 (2012).
[CrossRef]

Dubov, M.

A. V. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
[CrossRef] [PubMed]

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007).
[CrossRef]

Felbacq, D.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).

Fernandez, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007).
[CrossRef]

Fujimura, M.

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer-Verlag, 2003).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

Graf, R.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007).
[CrossRef]

Guenneau, S.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).

Hand, D. P.

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A86, 165–170 (2007).
[CrossRef]

Heinrich, M.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007).
[CrossRef]

Jia, Y.

Q. An, Y. Ren, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express, 3, 466–471 (2013).
[CrossRef]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012).
[CrossRef]

Johnson, S. G.

A. Oskooi and S. G. Johnson, “Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media,” J. Comput. Phys.230, 2369–2377 (2011).
[CrossRef]

Jundt, D.

Juodkazis, S.

S. Juodkazis and H. Misawa, “Laser processing of sapphire by strongly focused femtosecond pulses,” Appl. Phys. A93, 857–861 (2008).
[CrossRef]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

Kar, A. K.

Khrushchev, I.

Kitamura, K.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

Koshiba, M.

Kuhlmey, B.

G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflatteend chromatic dispersion with low losses,” Opt. Lett.28, 989–991 (2003).
[CrossRef] [PubMed]

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).

Laurell, F.

Leon-Saval, S.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).

Liu, Y.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

Louchev, O. A.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

Lu, Q.

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012).
[CrossRef]

McPhedran, R.

McPhedran, R. C.

Mezentsev, V.

Mezentsev, V. K.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Misawa, H.

S. Juodkazis and H. Misawa, “Laser processing of sapphire by strongly focused femtosecond pulses,” Appl. Phys. A93, 857–861 (2008).
[CrossRef]

Misawab, H.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

Mitchell, J.

Mizeikis, V.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

Nicolet, A.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, 2005).

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A89, 127–132 (2007).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A86, 165–170 (2007).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Okhrimchuk, A.

Okhrimchuk, A. G.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250, (2005).
[CrossRef] [PubMed]

Oskooi, A.

A. Oskooi and S. G. Johnson, “Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media,” J. Comput. Phys.230, 2369–2377 (2011).
[CrossRef]

Pasiskevicius, V.

Reid, D. T.

Ren, Y.

Q. An, Y. Ren, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express, 3, 466–471 (2013).
[CrossRef]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012).
[CrossRef]

Renversez, G.

G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflatteend chromatic dispersion with low losses,” Opt. Lett.28, 989–991 (2003).
[CrossRef] [PubMed]

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).

Romero, C.

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012).
[CrossRef]

Schmitz, H.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Shestakov, A.

Shestakov, A. V.

Small, D. L.

Steel, M. J.

Streltsov, A. M.

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE4941, 51–57 (2003).
[CrossRef]

Sudzius, M.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

Suhara, T.

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer-Verlag, 2003).
[CrossRef]

Thomas, J.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007).
[CrossRef]

Thomson, R. R.

Tsuji, Y.

Tüennermann, A.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007).
[CrossRef]

Tünnermann, A.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A86, 165–170 (2007).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A89, 127–132 (2007).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Turchin, A. V.

A. V. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

Vázquez de Aldana, J. R.

Q. An, Y. Ren, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express, 3, 466–471 (2013).
[CrossRef]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser & Photon. Rev. doi: (2013).
[CrossRef]

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefriengent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: Rapid Research Lett.6, 306–308 (2012).
[CrossRef]

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012).
[CrossRef]

White, T. P.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Williams, J. A. R.

A. V. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

Zelmon, D. E.

Zolla, F.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).

Appl. Opt.

Appl. Phys. A

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A89, 127–132 (2007).
[CrossRef]

S. Juodkazis and H. Misawa, “Laser processing of sapphire by strongly focused femtosecond pulses,” Appl. Phys. A93, 857–861 (2008).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A86, 165–170 (2007).
[CrossRef]

Appl. Phys. B

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007).
[CrossRef]

Appl. Phys. Express

Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012).
[CrossRef]

Appl. Phys. Lett.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007).
[CrossRef]

Conference on Laser Micromachining for Optoelectronic Device Fabrication

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE4941, 51–57 (2003).
[CrossRef]

J. Comput. Phys.

A. Oskooi and S. G. Johnson, “Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media,” J. Comput. Phys.230, 2369–2377 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Laser & Photon. Rev.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser & Photon. Rev. doi: (2013).
[CrossRef]

Laser Phys.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Opt. & Quantum Electron.

A. V. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Status Solidi: Rapid Research Lett.

N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefriengent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: Rapid Research Lett.6, 306–308 (2012).
[CrossRef]

Other

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, 2005).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 1989).

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer-Verlag, 2003).
[CrossRef]

I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005), http://www.google.com/patents/WO2005040874A2 .

R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag, 2012).
[CrossRef]

L. Dong, W. Wong, and M. E. Fermann, “Single mode propagation in fibers and rods with large leakage channels,” Patent US 2013/0089113 A1 (2013), http://www.google.co.uk/patents/US7787729 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Left: cross section of modeled depressed-cladding WG with two rings of tracks, and ellipsoid of indices for LiNbO3 host. Right: top microscopic view of example microstructured WG fabricated in LiNbO3 by high-repetition-rate fs laser.

Fig. 2
Fig. 2

Real parts of effective RIs for O and E waves as a function of wavelength for a depressed-cladding WG with two rings of tracks, Nr = 2. The O and E RIs of the unmodified material are also shown. WG parameters are: d = 1.6μm, a = 2μm, δn = −0.05.

Fig. 3
Fig. 3

Left: WG dispersion DW for O wave, and right: confinement losses for O and E waves as a function of wavelength for a depressed-cladding WG with two rings of tracks with various pitches. The material dispersion Dmat is also shown. Other WG parameters are: d = 1.6μm, δn = −0.05.

Fig. 4
Fig. 4

Left: WG dispersion DW for O wave, and right: confinement losses for O and E waves as a function of wavelength for a depressed-cladding WG with two rings of tracks of various RI contrasts. The material dispersion Dmat is also shown. Other WG parameters are: d = 1.6μm, a = 2μm.

Fig. 5
Fig. 5

Left: WG dispersion DW for O wave, and right: confinement losses for O and E waves as a function of wavelength for a depressed-cladding WG with varying number of track rings. The material dispersion Dmat is also shown. Other WG parameters are: d = 1.6μm, a = 2μm, δn = −0.01.

Fig. 6
Fig. 6

Left: confinement losses for O and E waves as a function of wavelength for depressed-cladding WG with seven rings of tracks, Nr = 7, with different diameters d = 1 – 2.2μm. Other WG parameters are: a = 2.5μm, δn = −0.01. The losses for seven rings of identical diameter are also shown (extracted from Fig. 5). Right: cross section of modeled WG structure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

× ( × E ) ω 2 μ 0 ε 0 ε ^ E = 0
ε ^ = ( ( n o + δ n ) 2 0 0 0 ( n o + δ n ) 2 0 0 0 ( n e + δ n ) 2 )
n PML ( r ) = n o , e i k max ( r r in L ) 2 , r in < r r in + L

Metrics