Abstract

We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Highly tolerant tunable waveguide polarization rotator scheme

C. Alonso-Ramos, R. Halir, A. Ortega-Moñux, P. Cheben, L. Vivien, Í. Molina-Fernández, D. Marris-Morini, S. Janz, D.-X. Xu, and J. Schmid
Opt. Lett. 37(17) 3534-3536 (2012)

Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity

Tzu-Hsuan Pan and Shuo-Yen Tseng
Opt. Express 23(8) 10405-10412 (2015)

Compact polarization rotator for silicon-based slot waveguide structures

Jinbiao Xiao, Yin Xu, Jiayuan Wang, and Xiaohan Sun
Appl. Opt. 53(11) 2390-2397 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, 1 (2012).
    [Crossref]
  2. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
    [Crossref]
  3. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  4. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
    [Crossref] [PubMed]
  5. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
    [Crossref]
  6. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
    [Crossref] [PubMed]
  7. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
    [Crossref] [PubMed]
  8. N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
    [Crossref] [PubMed]
  9. T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
    [Crossref]
  10. C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
    [Crossref] [PubMed]
  11. J. Yamauchi, M. Yamanoue, and H. Nakano, “A short polarization converter using a triangular waveguide,” J. Lightwave Technol. 26, 1708–1714 (2008).
    [Crossref]
  12. J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett. 37, 3711–3713 (2012).
    [Crossref] [PubMed]
  13. Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J.Opt. Soc. Am. B 25, 747–753 (2008).
    [Crossref]
  14. T. T. Cao, S. W. Chen, Y. H. Fei, L. B. Zhang, and Q. Y. Xu, “Ultra-compact and fabrication-tolerant polarization rotator based on a bend asymmetric-slab waveguide,” Appl. Opt. 52, 990–996 (2013).
    [Crossref] [PubMed]
  15. Y. Yue, L. Zhang, M. P. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17, 20694–20699 (2009).
    [Crossref] [PubMed]
  16. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16, 2628–2635 (2008).
    [Crossref] [PubMed]
  17. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Fabrication tolerance of asymmetric silicon-on-insulator polarization rotators,” J. Opt. Soc. Am. A 23, 1741–1745 (2006).
    [Crossref]
  18. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol. 23, 432–445 (2005).
    [Crossref]
  19. D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3, 381–389 (2011).
    [Crossref]
  20. A. V. Velasco, M. L. Calvo, P. Cheben, A. O. Monux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37, 365–367 (2012).
    [Crossref] [PubMed]
  21. D. O. Dzibrou, J. van der Tol, and M. K. Smit, “Improved fabrication process of low-loss and efficient polarization converters in InP-based photonic integrated circuits,” Opt. Lett. 38, 1061–1063 (2013).
    [Crossref] [PubMed]
  22. C. A. Ramos, S. R. Garcia, A. O. Monux, I. M. Fernandez, R. Zhang, H. G. Bach, and M. Schell, “Polarization rotator for InP rib waveguide,” Opt. Lett. 37, 335–337 (2012).
    [Crossref]
  23. Y. H. Ding, L. Liu, C. Peucheret, and H. Y. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20, 20021–20027 (2012).
    [Crossref] [PubMed]
  24. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30, 138–140 (2005).
    [Crossref] [PubMed]
  25. J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.
  26. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
    [Crossref] [PubMed]
  27. N. N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett. 32, 2131–2133 (2007).
    [Crossref] [PubMed]
  28. J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).
    [Crossref]
  29. H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
    [Crossref]
  30. D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [Crossref] [PubMed]
  31. Y. H. Ding, H. Y. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38, 1227–1229 (2013).
    [Crossref] [PubMed]
  32. J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
    [Crossref]
  33. M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J. 4, 707–714 (2012).
    [Crossref]
  34. J. N. Caspers, M. Z. Alam, and M. Mojahedi, “Compact hybrid plasmonic polarization rotator,” Opt. Lett. 37, 4615–4617 (2012).
    [Crossref] [PubMed]
  35. C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100, 041104 (2012).
    [Crossref]
  36. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
    [Crossref]
  37. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Photon. Rev. 3, 243–261 (2009).
    [Crossref]
  38. K. Chung, T. J. Karle, M. Rab, A. D. Greentree, and S. Tomljenovic-Hanic, “Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage,” Opt. Express 20, 23108–23116 (2012).
    [Crossref] [PubMed]
  39. C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

2013 (3)

2012 (12)

K. Chung, T. J. Karle, M. Rab, A. D. Greentree, and S. Tomljenovic-Hanic, “Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage,” Opt. Express 20, 23108–23116 (2012).
[Crossref] [PubMed]

C. A. Ramos, S. R. Garcia, A. O. Monux, I. M. Fernandez, R. Zhang, H. G. Bach, and M. Schell, “Polarization rotator for InP rib waveguide,” Opt. Lett. 37, 335–337 (2012).
[Crossref]

Y. H. Ding, L. Liu, C. Peucheret, and H. Y. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20, 20021–20027 (2012).
[Crossref] [PubMed]

A. V. Velasco, M. L. Calvo, P. Cheben, A. O. Monux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37, 365–367 (2012).
[Crossref] [PubMed]

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J. 4, 707–714 (2012).
[Crossref]

J. N. Caspers, M. Z. Alam, and M. Mojahedi, “Compact hybrid plasmonic polarization rotator,” Opt. Lett. 37, 4615–4617 (2012).
[Crossref] [PubMed]

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100, 041104 (2012).
[Crossref]

J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett. 37, 3711–3713 (2012).
[Crossref] [PubMed]

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, 1 (2012).
[Crossref]

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

2011 (6)

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref] [PubMed]

D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref] [PubMed]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3, 381–389 (2011).
[Crossref]

L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
[Crossref] [PubMed]

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
[Crossref]

2010 (2)

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).
[Crossref]

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

2009 (3)

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[Crossref]

Y. Yue, L. Zhang, M. P. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17, 20694–20699 (2009).
[Crossref] [PubMed]

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Photon. Rev. 3, 243–261 (2009).
[Crossref]

2008 (3)

2007 (3)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

N. N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett. 32, 2131–2133 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (3)

1998 (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Alam, M. Z.

Ambrosius, H.

Aspelmeyer, M.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[Crossref] [PubMed]

Aspuru-Guzik, A.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

Bach, H. G.

Barwicz, T.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

Bauters, J.

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, 1 (2012).
[Crossref]

Beausoleil, R. G.

Bergmann, K.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Bongioanni, I.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Bowers, J. E.

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, 1 (2012).
[Crossref]

D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref] [PubMed]

Bromberg, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Brooks, C.

Calvo, M. L.

Cao, T. T.

Caspers, J. N.

Cheben, P.

Chen, L.

Chen, S. W.

Chen, S. Y.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
[Crossref]

Chen, X. D.

Chen, Y. K.

Chung, K.

Crespi, A.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Cui, J. M.

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref] [PubMed]

C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

Dai, D. X.

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, 1 (2012).
[Crossref]

D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref] [PubMed]

Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J.Opt. Soc. Am. B 25, 747–753 (2008).
[Crossref]

Das, S.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

Deng, H.

Ding, Y. H.

Doerr, C. R.

Dong, C. H.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100, 041104 (2012).
[Crossref]

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref] [PubMed]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Dzibrou, D. O.

Fan, L.

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

Fei, Y. H.

Feng, N. N.

Fernandez, I. M.

Fukuda, H.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16, 2628–2635 (2008).
[Crossref] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[Crossref]

Garcia, S. R.

Grattan, K. T. V.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3, 381–389 (2011).
[Crossref]

Greentree, A. D.

Guo, G. C.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100, 041104 (2012).
[Crossref]

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref] [PubMed]

C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

Han, Z. F.

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref] [PubMed]

C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

Haus, H. A.

Huang, Y.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

Ippen, E.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

Ismail, N.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Itabashi, S.

Janz, S.

Jeannic, H. L.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Jessop, P. E.

Karle, T. J.

Kartner, F.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

Keyvaninia, S.

Kimerling, L. C.

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Komatsu, M.

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J. 4, 707–714 (2012).
[Crossref]

Koshiba, M.

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J. 4, 707–714 (2012).
[Crossref]

Kwong, D. L.

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
[Crossref]

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).
[Crossref]

Lahini, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Lapointe, J.

Leaird, D. E.

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

Leung, D. M. H.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3, 381–389 (2011).
[Crossref]

Li, C.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

Liu, L.

Lo, G. Q.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
[Crossref]

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).
[Crossref]

Lobino, M.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Longhi, S.

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Photon. Rev. 3, 243–261 (2009).
[Crossref]

Mataloni, P.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Matsuda, N.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Matthews, J. C. F.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Michel, J.

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Mojahedi, M.

Monux, A. O.

Munro, W. J.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Nakano, H.

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Niu, B.

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

O’Brien, J. L.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[Crossref]

Osellame, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Ou, H. Y.

Pello, J.

Peruzzo, A.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Peucheret, C.

Politi, A.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Popovic, M.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

Poulios, K.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Qi, M. H.

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

Rab, M.

Rahman, B. M. A.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3, 381–389 (2011).
[Crossref]

Rakich, P.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Ramos, C. A.

Ramponi, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Ren, X. F.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100, 041104 (2012).
[Crossref]

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref] [PubMed]

Resch, K. J.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[Crossref] [PubMed]

Roelkens, G.

Rudolph, T.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[Crossref] [PubMed]

Saitoh, K.

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J. 4, 707–714 (2012).
[Crossref]

Sansoni, L.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Schell, M.

Schenck, E.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[Crossref] [PubMed]

Schmid, J. H.

Sciarrino, F.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Shimizu, K.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Shinojima, H.

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Silberberg, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Smit, M.

Smit, M. K.

Smith, H.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

Song, M. P.

Sun, F. W.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100, 041104 (2012).
[Crossref]

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref] [PubMed]

C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

Sun, R.

Takesue, H.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Thompson, M. G.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Thong, J. T. L.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

Tokura, Y.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Tomljenovic-Hanic, S.

Tsuchizawa, T.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16, 2628–2635 (2008).
[Crossref] [PubMed]

Vachon, M.

Vallone, G.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

van der Tol, J.

van Veldhoven, R.

Varghese, L. T.

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

Vedral, V.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[Crossref] [PubMed]

Velasco, A. V.

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[Crossref]

Walther, P.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[Crossref] [PubMed]

Wang, J.

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

Wang, Z. C.

Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J.Opt. Soc. Am. B 25, 747–753 (2008).
[Crossref]

Watanabe, T.

Watts, M.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

Watts, M. R.

Weiner, A. M.

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

Weinfurter, H.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[Crossref] [PubMed]

Willner, A. E.

Wirth, J. C.

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

Worhoff, K.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Xiong, X.

C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

Xu, D. X.

Xu, Q. Y.

Xuan, Y.

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

Yamada, K.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16, 2628–2635 (2008).
[Crossref] [PubMed]

Yamanoue, M.

Yamauchi, J.

Yevick, D. O.

Yu, M. B.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).
[Crossref]

Yue, Y.

Zeilinger, A.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[Crossref] [PubMed]

Zhang, H. J.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
[Crossref]

Zhang, J.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
[Crossref]

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).
[Crossref]

Zhang, L.

Zhang, L. B.

Zhang, R.

Zhou, H. F.

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

Zhou, X. Q.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Zhu, S. Y.

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
[Crossref]

Zou, C. L.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100, 041104 (2012).
[Crossref]

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref] [PubMed]

C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

Zou, X. B.

C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett. 101, 021105 (2012).
[Crossref]

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100, 041104 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).
[Crossref]

IEEE Photon. J. (2)

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J. 4, 707–714 (2012).
[Crossref]

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3, 381–389 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J.Opt. Soc. Am. B (1)

Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J.Opt. Soc. Am. B 25, 747–753 (2008).
[Crossref]

Laser & Photon. Rev. (1)

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Photon. Rev. 3, 243–261 (2009).
[Crossref]

Light: Science and Applications (1)

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, 1 (2012).
[Crossref]

Nat. Commun. (1)

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Nat. Photon. (2)

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon. 1, 57–60 (2007).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009).
[Crossref]

Nat. Phys. (1)

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

Nature (1)

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (10)

M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30, 138–140 (2005).
[Crossref] [PubMed]

L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
[Crossref] [PubMed]

N. N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett. 32, 2131–2133 (2007).
[Crossref] [PubMed]

A. V. Velasco, M. L. Calvo, P. Cheben, A. O. Monux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37, 365–367 (2012).
[Crossref] [PubMed]

D. O. Dzibrou, J. van der Tol, and M. K. Smit, “Improved fabrication process of low-loss and efficient polarization converters in InP-based photonic integrated circuits,” Opt. Lett. 38, 1061–1063 (2013).
[Crossref] [PubMed]

C. A. Ramos, S. R. Garcia, A. O. Monux, I. M. Fernandez, R. Zhang, H. G. Bach, and M. Schell, “Polarization rotator for InP rib waveguide,” Opt. Lett. 37, 335–337 (2012).
[Crossref]

Y. H. Ding, H. Y. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38, 1227–1229 (2013).
[Crossref] [PubMed]

J. N. Caspers, M. Z. Alam, and M. Mojahedi, “Compact hybrid plasmonic polarization rotator,” Opt. Lett. 37, 4615–4617 (2012).
[Crossref] [PubMed]

J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett. 37, 3711–3713 (2012).
[Crossref] [PubMed]

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Sci. Rep. (1)

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Science (1)

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref] [PubMed]

Other (2)

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.

C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) STIRAP model in atomic system. (b) Analogue of STIRAP in waveguide system, with the white arrows indicating the electric field directions of the three modes. (c) The effective refractive index difference between V(H) and O modes along z direction. (d) The coupling strengths of V and H modes with O mode along z direction. (e) and (f) are the dynamics of the eigenstates of along z direction, which realize polarization conversions.

Fig. 2
Fig. 2

(a) The effective refractive indices of V and H modes against the waveguide width, respectively. (b) The coupling strengths of V and H modes with O mode against the gap between SW and AW, respectively. (c) Schematic illustration of the polarization rotator, with a SW of varying width and an AW of curved trend. Inset: the cross-section view of this rotator.

Fig. 3
Fig. 3

(a) Dependence of Error on L for different δw, with R = 1502, d0 = 0.03, δz = 4.5. (b) Dependence of Error on L for different R, with δw = 0.016, d0 = 0.03, δz = 4.5. (c) Dependence of Error on L for different d0, with δw = 0.016, R = 1502, δz = 4.5. (d) Dependence of Error on L for different δz, with δw = 0.016, R = 1502, d0 = 0.03. All the numbers are in the order of μm.

Fig. 4
Fig. 4

(a) Tolerance of δw, with R = 1502, d0 = 0.03, δz = 4.5, L = 150. (b) Tolerance of R, with δw = 0.016, d0 = 0.03, δz = 4.5, L = 150. (c) Tolerance of d0, with δw = 0.016, R = 1502, δz = 4.5, L = 150. (d) Tolerance of δz, with δw = 0.016, R = 1502, d0 = 0.03, L = 150. All the numbers are in the order of μm. And the grey area indicates a conversion efficiency over 99%.

Fig. 5
Fig. 5

Dependence of Error on λ, with δw = 0.016, R = 1502, d0 = 0.03, δz = 4.5, L = 150, which are all in the order of μm.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

0 / h ¯ = ω 1 | 1 1 | + ω 2 | 2 2 | + ω 3 | 3 3 | + ( Ω p e i ω p t | 1 2 | + Ω s e i ω s t | 2 3 | + h . c . ) .
0 / h ¯ = Ω p | 1 2 | + Ω s | 2 3 | + h . c ..
0 / h ¯ = ( 0 Ω p 0 Ω p 0 Ω s 0 Ω s 0 ) .
| ψ D = cos θ | 1 sin θ | 3 ,
/ k 0 = n V | V V | + n H | H H | + n O | O O | + g V ( | V O | + | O V | ) + g H ( | H O | + | O H | ) ,
/ k 0 = Δ n V | V V | + Δ n H | H H | + g V ( | V O | + | O V | ) + g H ( | H O | + | O H | ) .
/ k 0 = ( Δ n V g V 0 g V 0 g H 0 g H Δ n H ) ,
w ( z ) = w 0 + δ w L ( z δ z ) .
d ( z ) d 0 + z 2 / R .
g V ( H ) ( z ) g V ( H ) ( 0 ) w ( z ) e z 2 / D R ,
i d d z | Ψ ( z ) = ( z ) | Ψ ( z ) ,
| Ψ ( z ) = 𝔗 | Ψ ( 0 ) = e i 0 z ( s ) d s | Ψ ( 0 ) .
𝔗 | V = e i ϕ 1 | H , 𝔗 | H = e i ϕ 2 | V , 𝔗 | O = e i ϕ 3 | O ,
𝔗 = ( 0 0 e i ϕ 1 0 e i ϕ 3 0 e i ϕ 2 0 0 ) .
| 𝔗 | = ( 0.0772839 0.00844906 0.996973 0.0268221 0.999597 0.00928259 0.996648 0.0270963 0.0771882 ) .
Error = 1 η V H × η H V ,

Metrics