Abstract

Highly efficient, active and compact, unidirectional surface plasmon (SP) propagator composed of double subwavelength slits; filled with organic electro-optic (EO) material is proposed and investigated. By selecting appropriate structure parameters, obtained by solving phase relations between slits, the relative phase of SP generated at the slit exit aperture can be tailored. Simulation results show under normal illumination and external voltage of 8.7 V, SP launching efficiency of 55% and unidirectional SP extinction ratio about 47dB at wavelength of 632.8 nm is achieved. The power consumption of the structure is on the order of 9 fJ/bit which meet the power consumption limitation for optical devices. Moreover, the structure is very compact with effective total length of 1.2 µm and thickness of 0.6 µm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012).
    [CrossRef] [PubMed]
  2. F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express19(6), 4848–4855 (2011).
    [CrossRef] [PubMed]
  3. M. Afshari Bavil, L. Gao, and X. Sun, “A compact nanoplasmonics filter and intersection structure based on utilizing a slot cavity and a Fabry–Perot resonator,” Plasmonics, doi:.
    [CrossRef]
  4. A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012).
    [CrossRef]
  5. C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys.46(7A), 4144–4147 (2007).
    [CrossRef]
  6. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
    [CrossRef] [PubMed]
  7. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008).
    [CrossRef] [PubMed]
  8. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
    [CrossRef] [PubMed]
  9. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
    [CrossRef] [PubMed]
  10. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008).
    [CrossRef]
  11. Q. Li, T. B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).
  12. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113–041115 (2010).
    [CrossRef]
  13. F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
    [CrossRef]
  14. Y. K. Wang, X. R. Zhang, H. J. Tang, K. Yang, Y. X. Wang, Y. L. Song, T. H. Wei, and C. H. Wang, “A tunable unidirectional surface plasmon polaritons source,” Opt. Express17(22), 20457–20464 (2009).
    [CrossRef] [PubMed]
  15. J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett.97(8), 081106–081108 (2010).
    [CrossRef]
  16. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
    [CrossRef] [PubMed]
  17. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
    [CrossRef] [PubMed]
  18. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009).
    [CrossRef]
  19. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  20. H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007).
    [CrossRef] [PubMed]
  21. D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett.12(5), 2459–2463 (2012).
    [CrossRef] [PubMed]
  22. Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012).
    [CrossRef] [PubMed]
  23. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly Efficient All-Optical Control of Surface-Plasmon-Polariton Generation Based on a Compact Asymmetric Single Slit,” Nano Lett.11(7), 2933–2937 (2011).
    [CrossRef] [PubMed]
  24. J. Chen, Z. Li, J. Xiao, and Q. Gong, “Efficient All-Optical Molecule-Plasmon Modulation Based on T-shape Single Slit,” Plasmonics, doi:.
    [CrossRef]
  25. T. Satoh, Y. Toya, S. Yamamoto, T. Shimura, K. Kuroda, Y. Takahashi, M. Yoshimura, Y. Mori, T. Sasaki, and S. Ashihara, “Generation of mid- to far-infrared ultrashort pulses in 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” J. Opt. Soc. Am. B27(12), 2507–2511 (2010).
    [CrossRef]
  26. L. Dalton and S. Benight, “Theory-Guided Design of Organic Electro-Optic Materials and Devices,” Polymers3(4), 1325–1351 (2011).
    [CrossRef]
  27. B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinseka, and P. Gunter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem.16, 2839–2842 (2006).
    [CrossRef]
  28. S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J. P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
    [CrossRef] [PubMed]
  29. V. J. Sorger, D. Norberto, L. Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).
  30. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. R. Dalton, A. K. Y. Jen, and A. Scherer, “Optical Modulation and Detection in Slotted Silicon Waveguides,” Opt. Express13(14), 5216–5226 (2005).
    [CrossRef] [PubMed]
  31. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
    [CrossRef]
  32. W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
    [CrossRef]
  33. M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).
  34. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
    [CrossRef] [PubMed]
  35. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011).
    [CrossRef] [PubMed]
  36. S. Inoue and S. Yokoyama, “Highly compact organic electro-optic modulator based on nanoscale plasmon metal gap waveguides,” SPIE-OSA-IEEE7631, 763128 (2009).
  37. H. Nasari and M. S. Abrishamian, “Electrically tunable light focusing via a plasmonic lens,” J. Opt.14(12), 125002 (2012).
    [CrossRef]
  38. X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength Electro-optic Switch Based on Plasmonic T-Shaped Waveguide,” Plasmonics6(4), 613–618 (2011).
    [CrossRef]
  39. L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
    [CrossRef]
  40. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
    [CrossRef]
  41. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
    [CrossRef] [PubMed]
  42. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010).
    [CrossRef] [PubMed]
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  44. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm,” Opt. Lett.34(6), 839–841 (2009).
    [CrossRef] [PubMed]
  45. B. Chiou and J. Tsai, “Antireflective coating for ITO films deposited on glass substrate,” J. Mater. Sci. Mater. Electron.10(7), 491–495 (1999).
    [CrossRef]
  46. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, Th. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011).
    [CrossRef] [PubMed]
  47. F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B75(20), 205322 (2007).
    [CrossRef]
  48. S. Bozhevolnyi, Plasmonic Nanoguide and Circuits (Pan Stanford Publishing, 2008), pp.10–20.
  49. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
    [CrossRef]
  50. E. A. Bahaa Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991), Chapter 18, pp. 696–737.
  51. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
    [CrossRef]

2013 (3)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
[CrossRef] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).

2012 (6)

H. Nasari and M. S. Abrishamian, “Electrically tunable light focusing via a plasmonic lens,” J. Opt.14(12), 125002 (2012).
[CrossRef]

V. J. Sorger, D. Norberto, L. Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012).
[CrossRef]

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett.12(5), 2459–2463 (2012).
[CrossRef] [PubMed]

Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012).
[CrossRef] [PubMed]

L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012).
[CrossRef] [PubMed]

2011 (9)

F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express19(6), 4848–4855 (2011).
[CrossRef] [PubMed]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, Th. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly Efficient All-Optical Control of Surface-Plasmon-Polariton Generation Based on a Compact Asymmetric Single Slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

L. Dalton and S. Benight, “Theory-Guided Design of Organic Electro-Optic Materials and Devices,” Polymers3(4), 1325–1351 (2011).
[CrossRef]

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Q. Li, T. B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength Electro-optic Switch Based on Plasmonic T-Shaped Waveguide,” Plasmonics6(4), 613–618 (2011).
[CrossRef]

2010 (5)

J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett.97(8), 081106–081108 (2010).
[CrossRef]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113–041115 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

T. Satoh, Y. Toya, S. Yamamoto, T. Shimura, K. Kuroda, Y. Takahashi, M. Yoshimura, Y. Mori, T. Sasaki, and S. Ashihara, “Generation of mid- to far-infrared ultrashort pulses in 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” J. Opt. Soc. Am. B27(12), 2507–2511 (2010).
[CrossRef]

2009 (8)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009).
[CrossRef]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

S. Inoue and S. Yokoyama, “Highly compact organic electro-optic modulator based on nanoscale plasmon metal gap waveguides,” SPIE-OSA-IEEE7631, 763128 (2009).

F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm,” Opt. Lett.34(6), 839–841 (2009).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J. P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009).
[CrossRef] [PubMed]

Y. K. Wang, X. R. Zhang, H. J. Tang, K. Yang, Y. X. Wang, Y. L. Song, T. H. Wei, and C. H. Wang, “A tunable unidirectional surface plasmon polaritons source,” Opt. Express17(22), 20457–20464 (2009).
[CrossRef] [PubMed]

2008 (4)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008).
[CrossRef]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

2007 (5)

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys.46(7A), 4144–4147 (2007).
[CrossRef]

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007).
[CrossRef] [PubMed]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B75(20), 205322 (2007).
[CrossRef]

2006 (2)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
[CrossRef]

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinseka, and P. Gunter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem.16, 2839–2842 (2006).
[CrossRef]

2005 (1)

2004 (1)

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

1999 (2)

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

B. Chiou and J. Tsai, “Antireflective coating for ITO films deposited on glass substrate,” J. Mater. Sci. Mater. Electron.10(7), 491–495 (1999).
[CrossRef]

Abrishamian, M. S.

H. Nasari and M. S. Abrishamian, “Electrically tunable light focusing via a plasmonic lens,” J. Opt.14(12), 125002 (2012).
[CrossRef]

Afshari Bavil, M.

M. Afshari Bavil, L. Gao, and X. Sun, “A compact nanoplasmonics filter and intersection structure based on utilizing a slot cavity and a Fabry–Perot resonator,” Plasmonics, doi:.
[CrossRef]

Alloatti, L.

Altug, H.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012).
[CrossRef]

Amenda, J.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Arsenin, A. V.

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett.12(5), 2459–2463 (2012).
[CrossRef] [PubMed]

Ashihara, S.

Aspnes, D. E.

Atwater, H. A.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009).
[CrossRef]

Baehr-Jones, T.

Baets, R.

Bai, T. B.

Q. Li, T. B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).

Barklund, A.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
[CrossRef]

Baron, A.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Benight, S.

L. Dalton and S. Benight, “Theory-Guided Design of Organic Electro-Optic Materials and Devices,” Polymers3(4), 1325–1351 (2011).
[CrossRef]

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Bogaerts, W.

Bozhevolnyi, S. I.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Calawa, D. R.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Carlson, B.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Cerruti, M.

Çetin, A. E.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012).
[CrossRef]

Chen, A.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Chen, J.

J. Chen, Z. Li, J. Xiao, and Q. Gong, “Efficient All-Optical Molecule-Plasmon Modulation Based on T-shape Single Slit,” Plasmonics, doi:.
[CrossRef]

Chen, J. J.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly Efficient All-Optical Control of Surface-Plasmon-Polariton Generation Based on a Compact Asymmetric Single Slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113–041115 (2010).
[CrossRef]

Chiou, B.

B. Chiou and J. Tsai, “Antireflective coating for ITO films deposited on glass substrate,” J. Mater. Sci. Mater. Electron.10(7), 491–495 (1999).
[CrossRef]

Dai, D.

Dalton, L.

L. Dalton and S. Benight, “Theory-Guided Design of Organic Electro-Optic Materials and Devices,” Polymers3(4), 1325–1351 (2011).
[CrossRef]

Dalton, L. R.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. R. Dalton, A. K. Y. Jen, and A. Scherer, “Optical Modulation and Detection in Slotted Silicon Waveguides,” Opt. Express13(14), 5216–5226 (2005).
[CrossRef] [PubMed]

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Danz, N.

Deneault, S. J.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

Dereux, A.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Derose, C. T.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Descrovi, E.

Devaux, E.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

Dinu, R.

Dominici, L.

Du, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008).
[CrossRef]

Dumon, P.

Ebbesen, T. W.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Enami, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Erramilli, S.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012).
[CrossRef]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009).
[CrossRef]

Fedeli, J.

Fedyanin, D. Yu.

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett.12(5), 2459–2463 (2012).
[CrossRef] [PubMed]

Fifield, L.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Fournier, M.

Franzen, S.

Freude, W.

Gan, D.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008).
[CrossRef]

Gao, L.

L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012).
[CrossRef] [PubMed]

M. Afshari Bavil, L. Gao, and X. Sun, “A compact nanoplasmonics filter and intersection structure based on utilizing a slot cavity and a Fabry–Perot resonator,” Plasmonics, doi:.
[CrossRef]

Garcia-Vidal, F. J.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Garner, S.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Geis, W.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

Genenko, Y. A.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B75(20), 205322 (2007).
[CrossRef]

Genet, C.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Gerber, R. W.

Ginzburg, P.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
[CrossRef] [PubMed]

Gong, Q.

J. Chen, Z. Li, J. Xiao, and Q. Gong, “Efficient All-Optical Molecule-Plasmon Modulation Based on T-shape Single Slit,” Plasmonics, doi:.
[CrossRef]

Gong, Q. H.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly Efficient All-Optical Control of Surface-Plasmon-Polariton Generation Based on a Compact Asymmetric Single Slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113–041115 (2010).
[CrossRef]

Gonzalez, M. U.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Gramlich, V.

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinseka, and P. Gunter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem.16, 2839–2842 (2006).
[CrossRef]

Greenlee, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Gunter, P.

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinseka, and P. Gunter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem.16, 2839–2842 (2006).
[CrossRef]

Guo, R.

Hahn, H.

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

He, S.

Hillerkuss, D.

Hochberg, M.

Hu, F.

Huang, X. G.

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength Electro-optic Switch Based on Plasmonic T-Shaped Waveguide,” Plasmonics6(4), 613–618 (2011).
[CrossRef]

Hugonin, J. P.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Inoue, S.

S. Inoue and S. Yokoyama, “Highly compact organic electro-optic modulator based on nanoscale plasmon metal gap waveguides,” SPIE-OSA-IEEE7631, 763128 (2009).

Irwin, L.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Jazbinseka, M.

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinseka, and P. Gunter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem.16, 2839–2842 (2006).
[CrossRef]

Jen, A.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Jen, A. K. Y.

Jen, A. K.-Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Jin, G.

Q. Li, T. B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).

Jin, T.

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength Electro-optic Switch Based on Plasmonic T-Shaped Waveguide,” Plasmonics6(4), 613–618 (2011).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kim, T. D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Kimura, L.

V. J. Sorger, D. Norberto, L. Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

Kincaid, C.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009).
[CrossRef]

Kivshar, Y. S.

J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett.97(8), 081106–081108 (2010).
[CrossRef]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Koos, C.

Korn, D.

Krasavin, A. V.

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett.12(5), 2459–2463 (2012).
[CrossRef] [PubMed]

Krenn, J. R.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Krohn, K. E.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

Kuroda, K.

Lalanne, P.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Lawson, R.

Lee, C.

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys.46(7A), 4144–4147 (2007).
[CrossRef]

Leufke, P. M.

Leuthold, J.

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Li, F.

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).

Li, J.

Li, Q.

Q. Li, T. B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Li, Z.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly Efficient All-Optical Control of Surface-Plasmon-Polariton Generation Based on a Compact Asymmetric Single Slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113–041115 (2010).
[CrossRef]

J. Chen, Z. Li, J. Xiao, and Q. Gong, “Efficient All-Optical Molecule-Plasmon Modulation Based on T-shape Single Slit,” Plasmonics, doi:.
[CrossRef]

Liao, Y.

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Lindenmann, N.

Liu, Y. M.

Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012).
[CrossRef] [PubMed]

Lo, K.

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys.46(7A), 4144–4147 (2007).
[CrossRef]

Londergan, T.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Losego, M.

Loychik, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Lu, L.

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).

Luo, J.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Luo, X.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008).
[CrossRef]

Lyszczarz, T. M.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

Ma, R.

V. J. Sorger, D. Norberto, L. Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

Marchant, M. F.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

Maria, J. P.

Marino, G.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
[CrossRef] [PubMed]

Martínez, A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
[CrossRef] [PubMed]

Mathine, D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Mei, X.

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength Electro-optic Switch Based on Plasmonic T-Shaped Waveguide,” Plasmonics6(4), 613–618 (2011).
[CrossRef]

Melikyan, A.

Melzer, C.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B75(20), 205322 (2007).
[CrossRef]

Menchini, F.

Mertiri, A.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012).
[CrossRef]

Michelotti, F.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Mo, T.

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys.46(7A), 4144–4147 (2007).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009).
[CrossRef]

Moreno, L. M.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Mori, Y.

Mowers, W.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009).
[CrossRef]

Mustecaplioglu, O. E.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012).
[CrossRef]

Nasari, H.

H. Nasari and M. S. Abrishamian, “Electrically tunable light focusing via a plasmonic lens,” J. Opt.14(12), 125002 (2012).
[CrossRef]

Neumann, F.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B75(20), 205322 (2007).
[CrossRef]

Norberto, D.

V. J. Sorger, D. Norberto, L. Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Norwood, R. A.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

O’Connor, D.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Palmer, R.

Palomba, S.

Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012).
[CrossRef] [PubMed]

Park, Y. S.

Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012).
[CrossRef] [PubMed]

Peyghambarian, N.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Phelan, G.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

Qiu, M.

Radko, I. P.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Ren, A.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Rhodes, C.

Robinson, B. H.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Rodier, J. C.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Rodrigo, S. G.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
[CrossRef] [PubMed]

Rousseau, E.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Ruiz, B.

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinseka, and P. Gunter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem.16, 2839–2842 (2006).
[CrossRef]

Salgueiro, J. R.

J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett.97(8), 081106–081108 (2010).
[CrossRef]

Sasaki, T.

Satoh, T.

Scherer, A.

Schimmel, Th.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Shimura, T.

Sinta, R.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Song, Y.

Song, Y. L.

Sorger, V. J.

V. J. Sorger, D. Norberto, L. Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Spector, S. J.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

Steier, W. H.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Su, Y.

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).

Sullivan, P. A.

Sun, X.

M. Afshari Bavil, L. Gao, and X. Sun, “A compact nanoplasmonics filter and intersection structure based on utilizing a slot cavity and a Fabry–Perot resonator,” Plasmonics, doi:.
[CrossRef]

Sweatlock, L. A.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Takahashi, Y.

Tang, H. J.

Tang, L.

Tejeira, F. L.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Tian, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

Toya, Y.

Tsai, J.

B. Chiou and J. Tsai, “Antireflective coating for ITO films deposited on glass substrate,” J. Mater. Sci. Mater. Electron.10(7), 491–495 (1999).
[CrossRef]

Ulrich, S.

Vincze, P.

von Seggern, H.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B75(20), 205322 (2007).
[CrossRef]

Walheim, S.

Wang, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008).
[CrossRef]

Wang, C. H.

Wang, G.

Wang, J.

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Wang, T.

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).

Wang, X.

Wang, Y. K.

Wang, Y. X.

Weeber, J. C.

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Wei, T. H.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Wieland, J.

Wu, J.

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).

Wurtz, G. A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

Xiao, J.

J. Chen, Z. Li, J. Xiao, and Q. Gong, “Efficient All-Optical Molecule-Plasmon Modulation Based on T-shape Single Slit,” Plasmonics, doi:.
[CrossRef]

Xu, M.

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).

Xu, T.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008).
[CrossRef]

Yamamoto, S.

Yampolskii, S. V.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B75(20), 205322 (2007).
[CrossRef]

Yan, M.

Yang, K.

Yang, Z.

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinseka, and P. Gunter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem.16, 2839–2842 (2006).
[CrossRef]

Yanik, A. A.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012).
[CrossRef]

Ye, J.

Yi, H.

Yin, X. B.

Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012).
[CrossRef] [PubMed]

Yokoyama, S.

S. Inoue and S. Yokoyama, “Highly compact organic electro-optic modulator based on nanoscale plasmon metal gap waveguides,” SPIE-OSA-IEEE7631, 763128 (2009).

Yoshimura, M.

Yu, H.

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009).
[CrossRef]

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Yuan, X. C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Yue, S.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly Efficient All-Optical Control of Surface-Plasmon-Polariton Generation Based on a Compact Asymmetric Single Slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113–041115 (2010).
[CrossRef]

Zayats, A. V.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
[CrossRef] [PubMed]

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett.12(5), 2459–2463 (2012).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

Zentgraf, T.

Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012).
[CrossRef] [PubMed]

Zhang, C.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

Zhang, X.

Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012).
[CrossRef] [PubMed]

V. J. Sorger, D. Norberto, L. Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Zhang, X. R.

Zhao, Y.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008).
[CrossRef]

Zhou, L.

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).

Zhou, Z.

Appl. Phys. Lett. (6)

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, O. E. Mustecaplıoglu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett.101(12), 121113 (2012).
[CrossRef]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92(10), 101501 (2008).
[CrossRef]

Q. Li, T. B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett.98(25), 251109 (2011).

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113–041115 (2010).
[CrossRef]

J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett.97(8), 081106–081108 (2010).
[CrossRef]

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett.84(19), 3729–3731 (2004).
[CrossRef]

J. Light Wave Tech. (1)

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Light Wave Tech.31, 1170–1177 (2013).

J. Mater. Chem. (2)

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinseka, and P. Gunter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem.16, 2839–2842 (2006).
[CrossRef]

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem.9(9), 1905–1920 (1999).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

B. Chiou and J. Tsai, “Antireflective coating for ITO films deposited on glass substrate,” J. Mater. Sci. Mater. Electron.10(7), 491–495 (1999).
[CrossRef]

J. Opt. (1)

H. Nasari and M. S. Abrishamian, “Electrically tunable light focusing via a plasmonic lens,” J. Opt.14(12), 125002 (2012).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

C. Lee, K. Lo, and T. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys.46(7A), 4144–4147 (2007).
[CrossRef]

Nano Lett. (7)

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett.8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett.12(5), 2459–2463 (2012).
[CrossRef] [PubMed]

Y. M. Liu, S. Palomba, Y. S. Park, T. Zentgraf, X. B. Yin, and X. Zhang, “Compact Magnetic Antennas for Directional Excitation of Surface Plasmons,” Nano Lett.12(9), 4853–4858 (2012).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly Efficient All-Optical Control of Surface-Plasmon-Polariton Generation Based on a Compact Asymmetric Single Slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Nanophotonics (1)

V. J. Sorger, D. Norberto, L. Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1, 17–22 (2012).

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer / sol-gel waveguide modulators with exceptionally large electrooptic coefficients,” Nat. Photonics1(3), 180–185 (2007).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Nat. Phys. (1)

F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Nature Photonics Lett. (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics Lett.3(11), 654–657 (2009).
[CrossRef]

Opt. Express (8)

F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express19(6), 4848–4855 (2011).
[CrossRef] [PubMed]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, Th. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011).
[CrossRef] [PubMed]

L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. R. Dalton, A. K. Y. Jen, and A. Scherer, “Optical Modulation and Detection in Slotted Silicon Waveguides,” Opt. Express13(14), 5216–5226 (2005).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

Y. K. Wang, X. R. Zhang, H. J. Tang, K. Yang, Y. X. Wang, Y. L. Song, T. H. Wei, and C. H. Wang, “A tunable unidirectional surface plasmon polaritons source,” Opt. Express17(22), 20457–20464 (2009).
[CrossRef] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B75(20), 205322 (2007).
[CrossRef]

Plasmonics (3)

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength Electro-optic Switch Based on Plasmonic T-Shaped Waveguide,” Plasmonics6(4), 613–618 (2011).
[CrossRef]

M. Afshari Bavil, L. Gao, and X. Sun, “A compact nanoplasmonics filter and intersection structure based on utilizing a slot cavity and a Fabry–Perot resonator,” Plasmonics, doi:.
[CrossRef]

J. Chen, Z. Li, J. Xiao, and Q. Gong, “Efficient All-Optical Molecule-Plasmon Modulation Based on T-shape Single Slit,” Plasmonics, doi:.
[CrossRef]

Polymers (1)

L. Dalton and S. Benight, “Theory-Guided Design of Organic Electro-Optic Materials and Devices,” Polymers3(4), 1325–1351 (2011).
[CrossRef]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007).
[CrossRef] [PubMed]

Science (3)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science340(6130), 328–330 (2013).
[CrossRef] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

SPIE-OSA-IEEE (1)

S. Inoue and S. Yokoyama, “Highly compact organic electro-optic modulator based on nanoscale plasmon metal gap waveguides,” SPIE-OSA-IEEE7631, 763128 (2009).

Other (3)

S. Bozhevolnyi, Plasmonic Nanoguide and Circuits (Pan Stanford Publishing, 2008), pp.10–20.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

E. A. Bahaa Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991), Chapter 18, pp. 696–737.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Schematic 3D view of the proposed structure. b) 2D view of the structure. D and w stands for interspace distance and slit width, respectively. A, B located at 2µm away from slits are monitors to calculate the SPPs passing along it. The TM polarized light impinges from top with 632.8nm wavelength. The layers thickness is defined in legend.

Fig. 2
Fig. 2

The effective index dependence on the slit width for incident light of 632.8 nm wavelength. Solid and starred lines represent the real and imaginary parts of the effective index, respectively. The inset shows the sketch of a MDM structure.

Fig. 3
Fig. 3

a) Logarithmic magnetic field distribution in OFF state. b) shows the magnetic field intensity along X-direction along metalSilica interface, which in both directions is identical.

Fig. 4
Fig. 4

effective refractive index differences as function of applied voltage obtained by using Eqs. (4) and (5). The inset plot shows the effective refractive index versus applied voltage.

Fig. 5
Fig. 5

The asymmetrical extinction ratio as a function of interspace distance. The plot has a periodic nature with the periodicity of SPPs wavelength which has about 445 nm. A big asymmetrical extinction ratio about 47 dB for interspace distance of 1008 nm is achieved

Fig. 6
Fig. 6

a) The magnetic field intensity under the metallic layer recorded by two remote monitors. dashed lines are the result of right monitor while solid lines stands for the result of left monitor. b) Light intensity along X-direction, under the metallic layer in both states. c) Logarithmic magnetic field distribution when the voltage takes the value 8.7 V (ON state).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε= ε ω p 2 ω 2 +iωΓ
N(z)= 1 3 π 2 ( 8 π 2 m eff h 2 ) 3/2 ( E F +eϕ(z)) 3/2
ω p 2 = N(z) e 2 ε m
Ν eff ε d +0.5 ( k gap 0 k 0 ) 2 + ( k gap 0 k 0 ) 2 ( ε d ε m +0.25 ( k gap 0 k 0 ) 2 ) , k gap 0 = 2 ε d w ε m
n= n 0 + dn dE ( V h )
ϕ 1 +d 2π λ SP = ϕ 2 +2Mπ
ϕ 2 +d 2π λ SP = ϕ 1 +(2M+1)π
ϕ = 2π( N effleftON N effleftOFF )h λ
ϕ 1 ϕ 2 =( N effleft N effright )t 2π λ + ϕ = π 2

Metrics