Abstract

A hybrid plasmonic waveguide consisting of a high-index dielectric core embedded inside a rectangular-shaped metallic trench is proposed and its guiding properties are investigated at the wavelength of 1550 nm. Numerical simulations based on the finite element method have demonstrated that the introduced dielectric core could greatly reduce the modal loss of the metal trench while maintaining strong confinement of light. The effects of dielectric core size, material of the cladding and the dielectric core on the modal properties have been systematically investigated. The proposed hybrid plasmonic structure can be realized employing fabrication techniques of the traditional metal trench waveguides and could be leveraged as important elements for highly-integrated photonic circuits.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
    [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997).
    [CrossRef] [PubMed]
  4. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
    [CrossRef]
  5. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
    [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express14(20), 9467–9476 (2006).
    [CrossRef] [PubMed]
  8. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
    [CrossRef] [PubMed]
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
    [CrossRef]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  11. M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010).
    [CrossRef] [PubMed]
  12. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express18(18), 18945–18959 (2010).
    [CrossRef] [PubMed]
  13. X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19(14), 12865–12872 (2011).
    [CrossRef] [PubMed]
  14. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
    [CrossRef] [PubMed]
  15. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
    [CrossRef]
  16. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
    [CrossRef] [PubMed]
  17. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
    [CrossRef] [PubMed]
  18. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010).
    [CrossRef] [PubMed]
  19. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express18(12), 12971–12979 (2010).
    [CrossRef] [PubMed]
  20. L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A Silicon-Based 3-D Hybrid Long-Range Plasmonic Waveguide for Nanophotonic Integration,” J. Lightwave Technol.30(1), 163–168 (2012).
    [CrossRef]
  21. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express18(23), 23756–23762 (2010).
    [CrossRef] [PubMed]
  22. C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
    [CrossRef]
  23. Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
    [CrossRef]
  24. H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
    [CrossRef]
  25. D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt.49(36), 6868–6871 (2010).
    [CrossRef] [PubMed]
  26. Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B27(6), 1260–1265 (2010).
    [CrossRef]
  27. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
    [CrossRef]
  28. J. T. Kim, “CMOS-Compatible Hybrid Plasmonic Waveguide for Subwavelength Light Confinement and On-Chip Integration,” IEEE Photon. Technol. Lett.23(4), 206–208 (2011).
    [CrossRef]
  29. M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express19(9), 8379–8393 (2011).
    [CrossRef] [PubMed]
  30. X. Zuo and Z. Sun, “Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate,” Opt. Lett.36(15), 2946–2948 (2011).
    [CrossRef] [PubMed]
  31. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
    [CrossRef]
  32. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
    [CrossRef] [PubMed]
  33. J. Zhang, L. K. Cai, W. L. Bai, Y. Xu, and G. F. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett.36(12), 2312–2314 (2011).
    [CrossRef] [PubMed]
  34. Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
    [CrossRef]
  35. G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
    [CrossRef] [PubMed]

2013

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

2012

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A Silicon-Based 3-D Hybrid Long-Range Plasmonic Waveguide for Nanophotonic Integration,” J. Lightwave Technol.30(1), 163–168 (2012).
[CrossRef]

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

2011

2010

M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express18(18), 18945–18959 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express18(23), 23756–23762 (2010).
[CrossRef] [PubMed]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010).
[CrossRef] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
[CrossRef]

D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt.49(36), 6868–6871 (2010).
[CrossRef] [PubMed]

Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B27(6), 1260–1265 (2010).
[CrossRef]

2009

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

2008

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

2007

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

2006

2005

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
[CrossRef] [PubMed]

2000

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

1997

Aitchison, J. S.

Alam, M. Z.

Avrutsky, I.

Bai, W. L.

Bao, J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Benisty, H.

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
[CrossRef]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

Besbes, M.

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
[CrossRef]

Bian, Y. S.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express18(23), 23756–23762 (2010).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express14(20), 9467–9476 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Buchwald, W.

Cai, L. K.

Chen, D.

Chen, L.

Chen, S. H.

Chen, X.-D.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Cui, J.-M.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Dai, D. X.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Dong, C.-H.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Duley, W. W.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Fan, S. H.

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Gao, D. S.

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Guo, G.-C.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Guo, X.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Han, Z. H.

Han, Z.-F.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

He, S. L.

He, X.

Hu, A.

Kim, J. T.

J. T. Kim, “CMOS-Compatible Hybrid Plasmonic Waveguide for Subwavelength Light Confinement and On-Chip Integration,” IEEE Photon. Technol. Lett.23(4), 206–208 (2011).
[CrossRef]

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Kobayashi, T.

Kwon, M. S.

Kwong, D. L.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

Li, W.

Li, X.

Liow, T. Y.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

Liu, J. S.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Liu, L.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Liu, Y.

Lo, G. Q.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

Lv, L.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Ma, Y.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Meier, J.

Mojahedi, M.

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Morimoto, A.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Qiu, M.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Ren, X.-F.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Song, G. F.

Soref, R.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Su, Y. L.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Sun, F.-W.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Sun, Z.

Takahara, J.

Taki, H.

Tong, L.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Van, V.

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Veronis, G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Wang, G. P.

Wen, J. Z.

Wiley, B. J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Wu, M.

Xiao, L.

Xiao, Y.-F.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Xu, Y.

Xue, X. J.

Yamagishi, S.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Yang, L.

Yang, Q.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Yang, T.

Yu, H.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, J.

Zhang, T.

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Zhang, X. Y.

Zhao, X.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Zhao, Y. S.

Zheng, Z.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express18(23), 23756–23762 (2010).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Zhou, T.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express18(23), 23756–23762 (2010).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Zhou, Y.

Zhu, J. S.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express18(23), 23756–23762 (2010).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Zhu, L.

Zhu, S. Y.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

Zou, C.-L.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

Zuo, X.

Appl. Opt.

Appl. Phys. Lett.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly Confined Hybrid Plasmonic Modes Guided by Nanowire-embedded-metal Grooves for Low-loss Propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

J. T. Kim, “CMOS-Compatible Hybrid Plasmonic Waveguide for Subwavelength Light Confinement and On-Chip Integration,” IEEE Photon. Technol. Lett.23(4), 206–208 (2011).
[CrossRef]

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film,” IEEE Photon. Technol. Lett.24(6), 434–436 (2012).
[CrossRef]

J. Appl. Phys.

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metaldielectric groove,” J. Opt.15(5), 055011 (2013).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Nat. Photonics

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Opt. Express

M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express18(18), 18945–18959 (2010).
[CrossRef] [PubMed]

X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19(14), 12865–12872 (2011).
[CrossRef] [PubMed]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010).
[CrossRef] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express14(20), 9467–9476 (2006).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express18(23), 23756–23762 (2010).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express19(9), 8379–8393 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

Phys. Rev. Lett.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of the studied hybrid trench waveguide.

Fig. 2
Fig. 2

Dependence of the propagation lengths of the conventional metal trench and hybrid trench waveguides on the refractive index of the cladding layer.

Fig. 3
Fig. 3

Normalized energy density distributions of (a) conventional metal trench waveguide; (b) hybrid trench waveguide.

Fig. 4
Fig. 4

Propagation properties for waveguides with different dielectric core sizes and claddings: (a) propagation length and (b) transmission loss.

Fig. 5
Fig. 5

Energy density distribution of the hybrid trench waveguide (Wd = 300nm Ws = 50 nm) with different cladding material.

Fig. 6
Fig. 6

The effect of the cladding layer's refractive index on the confinement factor for waveguides with different geometries: (a) confinement factor in the dielectric core; (b) confinement factor in the Ag trench; (c) confinement factor in the cladding and the gap region.

Fig. 7
Fig. 7

Relationship between the imaginary part of modal effective index and the core width.

Fig. 8
Fig. 8

Dependence of propagation length of the hybrid mode on the height of the trench (dielectric core).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L=λ/[4πIm( N eff )]
α= 40πIm( n eff ) λ loge

Metrics