Abstract

We propose two distinctive designs of metamaterials demonstrating filtering functions in the visible and near infrared region. Since the emissivity is related to the absorption of a material, these filters would then offer a high emissivity in the visible and near infrared, and a low one beyond those wavelengths. Usually, such a system find their applications in the thermo-photovoltaics field as it can find as well a particular interest in optoelectronics, especially for optical detection. Numerical analysis has been performed on common metamaterial designs: a perforated metallic plate and a metallic cross grating. Through all these structures, we have demonstrated the various physical phenomena contributing to a reduction in the reflectivity in the optical and near infrared region. By showing realistic geometric parameters, the structures were not only designed to demonstrate an optical filtering function but were also meant to be feasible on large surfaces by lithographic methods such as micro contact printing or nano-imprint lithography.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Munk, in Frequency Selective Surfaces (John Wiley and Sons, 2000).
  2. G. R. Fowles, in Introduction to Modern Optics 2nd ed. (Dover Publications, 1989).
  3. W. H. Emerson, “Electromagnetic wave absorbers and anechoid chambers through the years,” IEEE Trans. Antenn. Propag.21(4), 484–490 (1973).
    [CrossRef]
  4. H. A. MacLeod, in Thin-Film Optical Filters, 4th ed. (T. and Francis Ed. 2010), p. 668.
  5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
    [CrossRef]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  9. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
    [CrossRef] [PubMed]
  11. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative index plsamonic metamaterial,” Phys. Rev. B79(4), 045131 (2009).
    [CrossRef]
  12. G. Berginc, “Structured surfaces and applications,” Int. J. Mater. Prod. Tec.34(4), 371–383 (2009).
    [CrossRef]
  13. W. Cai and V. Shalaev, in Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  14. L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
    [CrossRef] [PubMed]
  15. H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
    [CrossRef]
  16. S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
    [CrossRef]
  17. D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
    [CrossRef]
  18. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
    [CrossRef]
  19. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
    [CrossRef] [PubMed]
  20. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
    [CrossRef] [PubMed]
  21. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19(15), 14260–14267 (2011).
    [CrossRef] [PubMed]
  22. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express19(21), 20642–20649 (2011).
    [CrossRef] [PubMed]
  23. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
    [CrossRef] [PubMed]
  24. C. Caloz and T. Itoh, in Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach (John Wiley and Sons, 2006).
  25. L. C. Trintinilia and H. Ling, “Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme,” IEEE Trans. Antenn. Propag.52(9), 2253–2261 (2004).
    [CrossRef]
  26. S. Nosal, P. Soudais, and J. J. Greffet, “Integral Equation Modeling of doubly periodic Structures with an Efficient PMCHWT Formulation,” IEEE Trans. Antenn. Propag.60(1), 292–300 (2012).
    [CrossRef]
  27. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express21(7), 9144–9155 (2013).
    [CrossRef] [PubMed]
  28. R. Malureanu, M. Zalkovskij, Z. Song, C. Gritti, A. Andryieuski, Q. He, L. Zhou, P. U. Jepsen, and A. V. Lavrinenko, “A new method for obtaining transparent electrodes,” Opt. Express20(20), 22770–22782 (2012).
    [CrossRef] [PubMed]
  29. G. V. Eleftheriades, “EM transmission-line metamaterials,” Mater. Today12(3), 30–41 (2009).
    [CrossRef]
  30. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
    [CrossRef]
  31. H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
    [CrossRef]
  32. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  33. S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol.14, 4219–4233 (1996).
  34. T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
    [CrossRef]
  35. P. St John and H. Graighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett.68(7), 1022–1024 (1996).
    [CrossRef]
  36. A. Taflove and S. Hagness, in Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed. (Artech House, 2000).
  37. E. D. Palik, in Handbook of Optical Constants 1 (Academic Press, 1985), pp. 555–568.
  38. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  39. F. I. Baïda and D. Van Labeke, “Light transmission by sub-wavelength annular aperture arrays in metallic films,” Opt. Commun.209(1-3), 17–22 (2002).
    [CrossRef]
  40. J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons-an introduction,” Contemp. Phys.32(3), 173–183 (1991).
    [CrossRef]
  41. C. García-Meca, R. Ortuño, R. Salvador, A. Martínez, and J. Martí, “Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths,” Opt. Express15(15), 9320–9325 (2007).
    [CrossRef] [PubMed]
  42. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003).
    [CrossRef] [PubMed]
  43. G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, in Radar Cross Section (Handbook Plenum Press, 1970).
  44. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
    [CrossRef] [PubMed]

2013 (1)

2012 (4)

R. Malureanu, M. Zalkovskij, Z. Song, C. Gritti, A. Andryieuski, Q. He, L. Zhou, P. U. Jepsen, and A. V. Lavrinenko, “A new method for obtaining transparent electrodes,” Opt. Express20(20), 22770–22782 (2012).
[CrossRef] [PubMed]

S. Nosal, P. Soudais, and J. J. Greffet, “Integral Equation Modeling of doubly periodic Structures with an Efficient PMCHWT Formulation,” IEEE Trans. Antenn. Propag.60(1), 292–300 (2012).
[CrossRef]

H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

2011 (7)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19(15), 14260–14267 (2011).
[CrossRef] [PubMed]

M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express19(21), 20642–20649 (2011).
[CrossRef] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
[CrossRef] [PubMed]

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

2010 (3)

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

2009 (4)

G. V. Eleftheriades, “EM transmission-line metamaterials,” Mater. Today12(3), 30–41 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative index plsamonic metamaterial,” Phys. Rev. B79(4), 045131 (2009).
[CrossRef]

G. Berginc, “Structured surfaces and applications,” Int. J. Mater. Prod. Tec.34(4), 371–383 (2009).
[CrossRef]

2008 (2)

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2004 (1)

L. C. Trintinilia and H. Ling, “Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme,” IEEE Trans. Antenn. Propag.52(9), 2253–2261 (2004).
[CrossRef]

2003 (1)

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003).
[CrossRef] [PubMed]

2002 (1)

F. I. Baïda and D. Van Labeke, “Light transmission by sub-wavelength annular aperture arrays in metallic films,” Opt. Commun.209(1-3), 17–22 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1996 (4)

S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol.14, 4219–4233 (1996).

T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
[CrossRef]

P. St John and H. Graighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett.68(7), 1022–1024 (1996).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

1991 (1)

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons-an introduction,” Contemp. Phys.32(3), 173–183 (1991).
[CrossRef]

1973 (1)

W. H. Emerson, “Electromagnetic wave absorbers and anechoid chambers through the years,” IEEE Trans. Antenn. Propag.21(4), 484–490 (1973).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Alici, K. B.

Amaratunga, G. A. J.

H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
[CrossRef]

Andryieuski, A.

Averitt, R. D.

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative index plsamonic metamaterial,” Phys. Rev. B79(4), 045131 (2009).
[CrossRef]

Baïda, F. I.

F. I. Baïda and D. Van Labeke, “Light transmission by sub-wavelength annular aperture arrays in metallic films,” Opt. Commun.209(1-3), 17–22 (2002).
[CrossRef]

Berginc, G.

Bermel, P.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
[CrossRef] [PubMed]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Bingham, M.

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Bouffaron, R.

Bradbery, G. W.

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons-an introduction,” Contemp. Phys.32(3), 173–183 (1991).
[CrossRef]

Brissonneau, V.

Butt, H.

H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
[CrossRef]

Celanovic, I.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
[CrossRef] [PubMed]

Chen, S.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Cheng, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Chou, S.

S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol.14, 4219–4233 (1996).

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Dai, Q.

H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
[CrossRef]

Drouard, E.

D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
[CrossRef]

Duan, X.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Duche, D.

D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
[CrossRef]

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Eleftheriades, G. V.

G. V. Eleftheriades, “EM transmission-line metamaterials,” Mater. Today12(3), 30–41 (2009).
[CrossRef]

Emerson, W. H.

W. H. Emerson, “Electromagnetic wave absorbers and anechoid chambers through the years,” IEEE Trans. Antenn. Propag.21(4), 484–490 (1973).
[CrossRef]

Escoubas, L.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
[CrossRef]

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

Fan, K.

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Feng, Q.

Ferry, D.

T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
[CrossRef]

Flory, F.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

García-Meca, C.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Ghebrebrhan, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Graighead, H.

P. St John and H. Graighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett.68(7), 1022–1024 (1996).
[CrossRef]

Greffet, J. J.

S. Nosal, P. Soudais, and J. J. Greffet, “Integral Equation Modeling of doubly periodic Structures with an Efficient PMCHWT Formulation,” IEEE Trans. Antenn. Propag.60(1), 292–300 (2012).
[CrossRef]

Gritti, C.

Gu, C.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Harradon, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
[CrossRef] [PubMed]

He, Q.

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Hu, C.

Huang, C.

Jepsen, P. U.

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Joannopoulos, J. D.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
[CrossRef] [PubMed]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kim, E.

T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
[CrossRef]

Koschny, T.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003).
[CrossRef] [PubMed]

Kozicki, M.

T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
[CrossRef]

Krauss, P.

S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol.14, 4219–4233 (1996).

Kumar, A.

T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
[CrossRef]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Lavrinenko, A. V.

Le Rouzo, J.

D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
[CrossRef]

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, J.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Ling, H.

L. C. Trintinilia and H. Ling, “Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme,” IEEE Trans. Antenn. Propag.52(9), 2253–2261 (2004).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Liu, X. L.

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Luo, X.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Malureanu, R.

Markos, P.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003).
[CrossRef] [PubMed]

Martí, J.

Martínez, A.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Nosal, S.

S. Nosal, P. Soudais, and J. J. Greffet, “Integral Equation Modeling of doubly periodic Structures with an Efficient PMCHWT Formulation,” IEEE Trans. Antenn. Propag.60(1), 292–300 (2012).
[CrossRef]

Ortuño, R.

Ozbay, E.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Pilon, D.

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Pu, M.

Rajesekharan, R.

H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
[CrossRef]

Renstrom, P.

S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol.14, 4219–4233 (1996).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Salvador, R.

Sambles, J. R.

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons-an introduction,” Contemp. Phys.32(3), 173–183 (1991).
[CrossRef]

Sarfraz, S.

H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shrekenhamer, D.

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative index plsamonic metamaterial,” Phys. Rev. B79(4), 045131 (2009).
[CrossRef]

Simon, J. J.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
[CrossRef]

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003).
[CrossRef] [PubMed]

Soljacic, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
[CrossRef] [PubMed]

Song, Z.

Soudais, P.

S. Nosal, P. Soudais, and J. J. Greffet, “Integral Equation Modeling of doubly periodic Structures with an Efficient PMCHWT Formulation,” IEEE Trans. Antenn. Propag.60(1), 292–300 (2012).
[CrossRef]

Soukoulis, C. M.

K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19(15), 14260–14267 (2011).
[CrossRef] [PubMed]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003).
[CrossRef] [PubMed]

St John, P.

P. St John and H. Graighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett.68(7), 1022–1024 (1996).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Strikwerda, C.

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Tao, H.

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Thorchio, P.

D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
[CrossRef]

Tian, J.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Torchio, P.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010).
[CrossRef] [PubMed]

Trintinilia, L. C.

L. C. Trintinilia and H. Ling, “Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme,” IEEE Trans. Antenn. Propag.52(9), 2253–2261 (2004).
[CrossRef]

Turhan, A. B.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative index plsamonic metamaterial,” Phys. Rev. B79(4), 045131 (2009).
[CrossRef]

Van Labeke, D.

F. I. Baïda and D. Van Labeke, “Light transmission by sub-wavelength annular aperture arrays in metallic films,” Opt. Commun.209(1-3), 17–22 (2002).
[CrossRef]

Vasant Kumar, R.

H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
[CrossRef]

Vedraine, S.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Wang, M.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Whidden, T.

T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
[CrossRef]

Whitesides, G.

T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
[CrossRef]

Wilbur, J.

T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
[CrossRef]

Wilkinson, T. D.

H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Yang, F. Z.

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons-an introduction,” Contemp. Phys.32(3), 173–183 (1991).
[CrossRef]

Yang, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

Yeng, Y. X.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Zalkovskij, M.

Zhang, X.

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Zhao, Z.

Zhou, L.

Appl. Phys. Lett. (3)

H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012).
[CrossRef]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011).
[CrossRef]

P. St John and H. Graighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett.68(7), 1022–1024 (1996).
[CrossRef]

Contemp. Phys. (1)

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons-an introduction,” Contemp. Phys.32(3), 173–183 (1991).
[CrossRef]

IEEE Trans. Antenn. Propag. (3)

L. C. Trintinilia and H. Ling, “Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme,” IEEE Trans. Antenn. Propag.52(9), 2253–2261 (2004).
[CrossRef]

S. Nosal, P. Soudais, and J. J. Greffet, “Integral Equation Modeling of doubly periodic Structures with an Efficient PMCHWT Formulation,” IEEE Trans. Antenn. Propag.60(1), 292–300 (2012).
[CrossRef]

W. H. Emerson, “Electromagnetic wave absorbers and anechoid chambers through the years,” IEEE Trans. Antenn. Propag.21(4), 484–490 (1973).
[CrossRef]

Int. J. Mater. Prod. Tec. (1)

G. Berginc, “Structured surfaces and applications,” Int. J. Mater. Prod. Tec.34(4), 371–383 (2009).
[CrossRef]

J. Vac. Sci. Technol. (1)

S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol.14, 4219–4233 (1996).

Mater. Today (1)

G. V. Eleftheriades, “EM transmission-line metamaterials,” Mater. Today12(3), 30–41 (2009).
[CrossRef]

Nano Lett. (2)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun. (1)

F. I. Baïda and D. Van Labeke, “Light transmission by sub-wavelength annular aperture arrays in metallic films,” Opt. Commun.209(1-3), 17–22 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (3)

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative index plsamonic metamaterial,” Phys. Rev. B79(4), 045131 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011).
[CrossRef]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Other (8)

H. A. MacLeod, in Thin-Film Optical Filters, 4th ed. (T. and Francis Ed. 2010), p. 668.

B. A. Munk, in Frequency Selective Surfaces (John Wiley and Sons, 2000).

G. R. Fowles, in Introduction to Modern Optics 2nd ed. (Dover Publications, 1989).

W. Cai and V. Shalaev, in Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

C. Caloz and T. Itoh, in Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach (John Wiley and Sons, 2006).

A. Taflove and S. Hagness, in Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed. (Artech House, 2000).

E. D. Palik, in Handbook of Optical Constants 1 (Academic Press, 1985), pp. 555–568.

G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, in Radar Cross Section (Handbook Plenum Press, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Optical specifications of the optical filter. Low reflectivity has to be achieved from visible up to 2.5 µm and a mirror-like behavior from 3 to 12 µm.

Fig. 2
Fig. 2

Unit cells of a coaxial array (a) and a metal cross grating (b).

Fig. 3
Fig. 3

Schematic view of the steps of nanoimprint fabrication technique.

Fig. 4
Fig. 4

Principle of micro-contact printing fabrication.

Fig. 5
Fig. 5

Fictional box and the included structure, geometry and mesh used in the 3D-2D periodic method from the SPECTRE code.

Fig. 6
Fig. 6

Sideview of the FDTD calculation domain showing the structure in the center and the front and back detectors giving a measurement of the reflected and transmitted power emitted by the source place at λ/2 of the structure. Perfectly match layers are placed along z on both ends of the domain (a). Mesh is represented in the top-view of the calculation domain (b). Periodic conditions are used along the y and x directions.

Fig. 7
Fig. 7

Reflectance (a), transmission (b) and absorption (c) spectra of the coaxial cable grating (d). The thickness value of the metal layer is varied from 100 to 600 nm. Upper and lower media is vacuum.

Fig. 8
Fig. 8

Real part of the normal Electric field on the walls of the cavity, for different heights at normal incidence and λ = 0.6 μm. Lower medium is vacuum. Incident Electric field propagates along x.

Fig. 9
Fig. 9

Effect of the lower medium on reflectance (a), transmission (b) and absorption (c) properties of the structure, and mapping of the normal field intensity at λ = 0.5 µm (d). Thickness of the metal layer is equal to 150 nm.

Fig. 10
Fig. 10

Reflectance of the 150 nm thick periodic structure with a n = 1.5 substrate (a), and comparison with a non-perforated silver plate (b).

Fig. 11
Fig. 11

Reflectance spectrum at normal incidence and in the visible and near infrared region of a silver cross grating floating in vacuum [26] (a) and its parameters: thickness t = 150 nm, width and length of the stripes forming the cross w = 54 nm and L = 266 nm, respectively, and s = 30 nm length of the gap between the structures (b).

Fig. 12
Fig. 12

Reflectance spectra for different scales of floating-in-the-air silver crosses grating from 0.5 to 5 µm range at normal incidence.

Fig. 13
Fig. 13

Absorptance spectra of thick tungsten and gold layers, from 0.5 to 2 µm range and at normal incidence.

Fig. 14
Fig. 14

Reflectance spectrum from 1 to 10 µm range at normal incidence of the three layers stack and unit cell of the modeled grating (a) and its geometric parameters (b).

Fig. 15
Fig. 15

Optical indices of a commercial Polyvinylidene fluoride from 0.5 to 2.5 µm (a) and reflectance spectrum of the Ag Cross/PVDF/W stack and a semi-infinite thick tungsten layer at normal incidence from 0.5 to 2.5 µm range (b).

Fig. 16
Fig. 16

Reflectivity spectrum of the Ag cross/PVDF/W stack and a semi-infinite thick tungsten layer at normal incidence for the 3-10 µm range.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k sp = 2π λ n diel ε metal ε metal +1
k sp = k i +m 2π D

Metrics