Abstract

Silica micro-bubble resonators (MBRs) with cavity quality factor as high as Q = 5 × 107 are fabricated. The total dispersion of MBRs is analyzed. The thin-wall structure opens a new anomalous dispersion window and thus supports the dispersion compensation for hyper-parametric frequency conversion processes. Experimentally, Kerr parametric oscillation is observed in a 136 μm diameter MBR, frequency comb generation is also realized. Meanwhile the same nonlinear process is not allowed in solid silica spheres with size smaller than 150 μm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
    [CrossRef]
  2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  3. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007).
    [CrossRef] [PubMed]
  4. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with Monolithic Whispering Gallery Mode Resonators,” Phys. Rev. Lett.104(10), 103902 (2010).
    [CrossRef] [PubMed]
  5. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett.36(12), 2290–2292 (2011).
    [CrossRef] [PubMed]
  6. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery Modes,” J. Opt. Soc. Am. A20(1), 157–162 (2003).
    [CrossRef] [PubMed]
  7. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
    [CrossRef] [PubMed]
  8. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion,” Nat. Photonics3(9), 529–533 (2009).
    [CrossRef]
  9. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express20(25), 27661–27669 (2012).
    [CrossRef] [PubMed]
  10. J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20(24), 26337–26344 (2012).
    [CrossRef] [PubMed]
  11. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express19(9), 8102–8107 (2011).
    [CrossRef] [PubMed]
  12. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37(1), 43–45 (2012).
    [CrossRef] [PubMed]
  13. A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16(6), 4130–4144 (2008).
    [CrossRef] [PubMed]
  14. S. Coen and M. Haelterman, “Modulational Instability Induced by Cavity Boundary Conditions in a Normally Dispersive Optical Fiber,” Phys. Rev. Lett.79(21), 4139–4142 (1997).
    [CrossRef]
  15. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery- mode resonators,” Phys. Rev. A82(3), 033801 (2010).
    [CrossRef]
  16. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
    [CrossRef] [PubMed]
  17. S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett.36(17), 3521–3523 (2011).
    [CrossRef] [PubMed]
  18. H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express18(24), 25081–25088 (2010).
    [CrossRef] [PubMed]
  19. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett.36(23), 4536–4538 (2011).
    [CrossRef] [PubMed]
  20. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett.35(11), 1866–1868 (2010).
    [CrossRef] [PubMed]
  21. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A76(4), 043837 (2007).
    [CrossRef]
  22. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express17(18), 16209–16215 (2009).
    [CrossRef] [PubMed]
  23. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
    [CrossRef] [PubMed]
  24. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. J. Wigley, and G. I. Stegeman, “Enhanced self-phase modulation in tapered fibers,” Opt. Lett.18(23), 1996–1998 (1993).
    [CrossRef] [PubMed]
  25. C. A. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express19, 4357–4362 (2006).
  26. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000).
    [CrossRef] [PubMed]
  27. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express15(20), 12755–12762 (2007).
    [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  29. W. Robert, Boyd, Nonlinear Optics, 3rd Ed. (Elsevier, 2010).
  30. B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillationsin ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett.87(18), 181109 (2005).
    [CrossRef]

2012 (4)

2011 (6)

2010 (4)

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with Monolithic Whispering Gallery Mode Resonators,” Phys. Rev. Lett.104(10), 103902 (2010).
[CrossRef] [PubMed]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery- mode resonators,” Phys. Rev. A82(3), 033801 (2010).
[CrossRef]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett.35(11), 1866–1868 (2010).
[CrossRef] [PubMed]

H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express18(24), 25081–25088 (2010).
[CrossRef] [PubMed]

2009 (3)

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express17(18), 16209–16215 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express15(20), 12755–12762 (2007).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A76(4), 043837 (2007).
[CrossRef]

2006 (1)

2005 (1)

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillationsin ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett.87(18), 181109 (2005).
[CrossRef]

2004 (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

2003 (1)

2000 (1)

1997 (1)

S. Coen and M. Haelterman, “Modulational Instability Induced by Cavity Boundary Conditions in a Normally Dispersive Optical Fiber,” Phys. Rev. Lett.79(21), 4139–4142 (1997).
[CrossRef]

1993 (1)

Agha, I. H.

I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express17(18), 16209–16215 (2009).
[CrossRef] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A76(4), 043837 (2007).
[CrossRef]

Aitchison, J. S.

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Beausoleil, R. G.

Benson, O.

Berneschi, S.

Birks, T. A.

Brasch, V.

Bures, J.

Chembo, Y. K.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery- mode resonators,” Phys. Rev. A82(3), 033801 (2010).
[CrossRef]

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with Monolithic Whispering Gallery Mode Resonators,” Phys. Rev. Lett.104(10), 103902 (2010).
[CrossRef] [PubMed]

Coen, S.

S. Coen and M. Haelterman, “Modulational Instability Induced by Cavity Boundary Conditions in a Normally Dispersive Optical Fiber,” Phys. Rev. Lett.79(21), 4139–4142 (1997).
[CrossRef]

Conti, G. N.

Cosi, F.

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Dulashko, Y.

Dumais, P.

Fan, X.

Farnesi, D.

Foster, M. A.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A76(4), 043837 (2007).
[CrossRef]

Gaeta, A. L.

Gonthier, F.

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Guo, Y.

Haelterman, M.

S. Coen and M. Haelterman, “Modulational Instability Induced by Cavity Boundary Conditions in a Normally Dispersive Optical Fiber,” Phys. Rev. Lett.79(21), 4139–4142 (1997).
[CrossRef]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Hartinger, K.

Henze, R.

Herr, T.

Holzwarth, R.

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express20(25), 27661–27669 (2012).
[CrossRef] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Ilchenko, V. S.

Jugessur, A.

Kippenberg, T. J.

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express20(25), 27661–27669 (2012).
[CrossRef] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

Lacroix, S.

Lee, H.

Levy, J. S.

Li, H.

Li, J.

Liang, W.

Lipson, M.

Maleki, L.

Manolatou, C.

Matsko, A. B.

Meier, J.

Min, B.

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillationsin ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett.87(18), 181109 (2005).
[CrossRef]

Mohammed, W. S.

Mojahedi, M.

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

Okawachi, Y.

Pelli, S.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

Qian, L.

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

Reddy, K.

Riemensberger, J.

Righini, G. C.

Rubiola, E.

Russell, P. St. J.

Saha, K.

Savchenkov, A. A.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Schmidt, B. S.

Seidel, D.

Seifert, T.

Sharping, J. E.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A76(4), 043837 (2007).
[CrossRef]

Soria, S.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

Stegeman, G. I.

Strekalov, D. V.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with Monolithic Whispering Gallery Mode Resonators,” Phys. Rev. Lett.104(10), 103902 (2010).
[CrossRef] [PubMed]

Sumetsky, M.

Sun, Y.

Turner, C. A.

Vahala, K.

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillationsin ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett.87(18), 181109 (2005).
[CrossRef]

Vahala, K. J.

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20(24), 26337–26344 (2012).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

Villeneuve, A.

Wadsworth, W. J.

Ward, J.

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

Wen, Y. H.

Wigley, P. G. J.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Willner, A. E.

Windeler, R. S.

Yang, K. Y.

Yang, L.

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillationsin ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett.87(18), 181109 (2005).
[CrossRef]

Yu, N.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with Monolithic Whispering Gallery Mode Resonators,” Phys. Rev. Lett.104(10), 103902 (2010).
[CrossRef] [PubMed]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery- mode resonators,” Phys. Rev. A82(3), 033801 (2010).
[CrossRef]

Yue, Y.

Zhang, L.

Appl. Phys. Lett. (1)

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillationsin ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett.87(18), 181109 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photonics (2)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Opt. Express (8)

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express20(25), 27661–27669 (2012).
[CrossRef] [PubMed]

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20(24), 26337–26344 (2012).
[CrossRef] [PubMed]

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express19(9), 8102–8107 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16(6), 4130–4144 (2008).
[CrossRef] [PubMed]

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express15(20), 12755–12762 (2007).
[CrossRef] [PubMed]

H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express18(24), 25081–25088 (2010).
[CrossRef] [PubMed]

I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express17(18), 16209–16215 (2009).
[CrossRef] [PubMed]

C. A. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express19, 4357–4362 (2006).

Opt. Lett. (8)

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett.36(23), 4536–4538 (2011).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett.35(11), 1866–1868 (2010).
[CrossRef] [PubMed]

P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. J. Wigley, and G. I. Stegeman, “Enhanced self-phase modulation in tapered fibers,” Opt. Lett.18(23), 1996–1998 (1993).
[CrossRef] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
[CrossRef] [PubMed]

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett.36(12), 2290–2292 (2011).
[CrossRef] [PubMed]

S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett.36(17), 3521–3523 (2011).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37(1), 43–45 (2012).
[CrossRef] [PubMed]

Phys. Rev. A (2)

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery- mode resonators,” Phys. Rev. A82(3), 033801 (2010).
[CrossRef]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A76(4), 043837 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009).
[CrossRef] [PubMed]

S. Coen and M. Haelterman, “Modulational Instability Induced by Cavity Boundary Conditions in a Normally Dispersive Optical Fiber,” Phys. Rev. Lett.79(21), 4139–4142 (1997).
[CrossRef]

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with Monolithic Whispering Gallery Mode Resonators,” Phys. Rev. Lett.104(10), 103902 (2010).
[CrossRef] [PubMed]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

W. Robert, Boyd, Nonlinear Optics, 3rd Ed. (Elsevier, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a-b) The effective RI (black square) and the group RI (red circle) versus wavelength of a microsphere and a 3 μm wall thickness MBR are plotted. The diameter of the both micro-resonator is 120 μm. (c) Plot of ΔFSR as a function of MBR size at wavelength 1.55 μm, bubble wall thickness varies from 3.5 to 4.5 μm. (d) Plot of ZDW versus MBR wall thickness, MBR size is fixed at 120 μm.

Fig. 2
Fig. 2

The fabrication process of a MBR.

Fig. 3
Fig. 3

(a) Transmitted spectrum of a 136 μm diameter and 3-4μm thick wall MBR, the mode Q is 5 × 107. Inset is a photo of the MBR. (b) Transmitted spectrum of the MBR at 3-4 mW optical pump.

Fig. 4
Fig. 4

Transmitted spectrum under optical pump. (a) A 136 μm silica sphere, (b) a 245 μm diameter silica sphere. The inset in (a) shows a photo of the 136 μm sphere.

Fig. 5
Fig. 5

ΔFSR as a function of RI inside the MBR, and the bubble wall thickness. The diameter of MBR is 136 μm.

Metrics