Abstract

We demonstrate photonic devices based on standard 3C SiC epitaxially grown on silicon. We achieve high optical confinement by taking advantage of the high stiffness of SiC and undercutting the underlying silicon substrate. We demonstrate a 20 μm radius suspended microring resonator with Q=14,100 fabricated on commercially available SiC-on-silicon substrates.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Goldberg, M. E. Levinshtein, and S. L. Rumyanstev, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, New York (John Wiley and Sons, Inc., 2001).
  2. S. Yamada, B.-S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a sic photonic crystal nanocavity operating at 1.55 μ m,” Opt. Express20, 14789–14796 (2012).
    [CrossRef] [PubMed]
  3. X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett.59, 1938–1939 (1991).
    [CrossRef]
  4. L. L. Chase and E. W. V. Stryland, Handbook of Laser Science and Technology: Suppl. 2: Optical Materials(CRC Press, Boca Raton, FL, 1995), chap. Nonlinear refractive index: inorganic materials, p. 269.
  5. M. Ziaei-Moayyed, M. Su, C. Reinke, and R. Olsson, “Silicon carbide phononic crystals for high fq micromechanical resonators,” in “Ultrasonics Symposium (IUS), 2010 IEEE,” (IEEE, 2010), pp. 162–166.
    [CrossRef]
  6. A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Materials Science in Semiconductor Processing3, 367–374 (2000).
    [CrossRef]
  7. X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett.58, 917–918 (1991).
    [CrossRef]
  8. L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the smart cut process,” Electron. Lett.32, 1144–1145 (1996).
    [CrossRef]
  9. X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin , “Silicon carbide microdisk resonator,” Opt. Lett., 38(8), 1304–1306 (2013).
    [CrossRef] [PubMed]
  10. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14, 4357–4362 (2006).
    [CrossRef] [PubMed]
  11. G. Pandraud, P. French, and P. Sarro. “Fabrication and characteristics of a PECVD SiC evanescent wave optical sensor,” Sensors and Actuators A: Physical, 142(1), 61–66 (2008).
    [CrossRef]
  12. K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3C silicon carbide thin films,” J. Microelectromechanical Sys.14, 664–672 (2005).
    [CrossRef]
  13. P. Yih, V. Saxena, and A. Steckl, “A review of SiC reactive ion etching in fluorinated plasmas,” physica status solidi (b)202, 605–642 (1997).
    [CrossRef]
  14. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express16, 11930–11936 (2008).
    [CrossRef] [PubMed]
  15. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express17, 1527–1534 (2009).
    [CrossRef] [PubMed]
  16. M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” J. Microelectromechanical Sys.19, 229–238 (2010).
    [CrossRef]

2013 (1)

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin , “Silicon carbide microdisk resonator,” Opt. Lett., 38(8), 1304–1306 (2013).
[CrossRef] [PubMed]

2012 (1)

2010 (1)

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” J. Microelectromechanical Sys.19, 229–238 (2010).
[CrossRef]

2009 (1)

2008 (2)

A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express16, 11930–11936 (2008).
[CrossRef] [PubMed]

G. Pandraud, P. French, and P. Sarro. “Fabrication and characteristics of a PECVD SiC evanescent wave optical sensor,” Sensors and Actuators A: Physical, 142(1), 61–66 (2008).
[CrossRef]

2006 (1)

2005 (1)

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3C silicon carbide thin films,” J. Microelectromechanical Sys.14, 664–672 (2005).
[CrossRef]

2000 (1)

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Materials Science in Semiconductor Processing3, 367–374 (2000).
[CrossRef]

1997 (1)

P. Yih, V. Saxena, and A. Steckl, “A review of SiC reactive ion etching in fluorinated plasmas,” physica status solidi (b)202, 605–642 (1997).
[CrossRef]

1996 (1)

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the smart cut process,” Electron. Lett.32, 1144–1145 (1996).
[CrossRef]

1991 (2)

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett.59, 1938–1939 (1991).
[CrossRef]

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett.58, 917–918 (1991).
[CrossRef]

Asano, T.

Bruel, M.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the smart cut process,” Electron. Lett.32, 1144–1145 (1996).
[CrossRef]

Chase, L. L.

L. L. Chase and E. W. V. Stryland, Handbook of Laser Science and Technology: Suppl. 2: Optical Materials(CRC Press, Boca Raton, FL, 1995), chap. Nonlinear refractive index: inorganic materials, p. 269.

Chen, L.

Di Cioccio, L.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the smart cut process,” Electron. Lett.32, 1144–1145 (1996).
[CrossRef]

Dunning, J.

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3C silicon carbide thin films,” J. Microelectromechanical Sys.14, 664–672 (2005).
[CrossRef]

Evans, A. G.

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Materials Science in Semiconductor Processing3, 367–374 (2000).
[CrossRef]

Feng, P. X.-L.

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin , “Silicon carbide microdisk resonator,” Opt. Lett., 38(8), 1304–1306 (2013).
[CrossRef] [PubMed]

Foster, M. A.

French, P.

G. Pandraud, P. French, and P. Sarro. “Fabrication and characteristics of a PECVD SiC evanescent wave optical sensor,” Sensors and Actuators A: Physical, 142(1), 61–66 (2008).
[CrossRef]

Gaeta, A. L.

Goldberg, Y.

Y. Goldberg, M. E. Levinshtein, and S. L. Rumyanstev, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, New York (John Wiley and Sons, Inc., 2001).

Hopcroft, M. A.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” J. Microelectromechanical Sys.19, 229–238 (2010).
[CrossRef]

Irvine, K. G.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett.59, 1938–1939 (1991).
[CrossRef]

Jackson, K. M.

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3C silicon carbide thin films,” J. Microelectromechanical Sys.14, 664–672 (2005).
[CrossRef]

Jaussaud, C.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the smart cut process,” Electron. Lett.32, 1144–1145 (1996).
[CrossRef]

Kenny, T. W.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” J. Microelectromechanical Sys.19, 229–238 (2010).
[CrossRef]

Le Tiec, Y.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the smart cut process,” Electron. Lett.32, 1144–1145 (1996).
[CrossRef]

Lee, J. Y.

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin , “Silicon carbide microdisk resonator,” Opt. Lett., 38(8), 1304–1306 (2013).
[CrossRef] [PubMed]

Letertre, F.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the smart cut process,” Electron. Lett.32, 1144–1145 (1996).
[CrossRef]

Levinshtein, M. E.

Y. Goldberg, M. E. Levinshtein, and S. L. Rumyanstev, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, New York (John Wiley and Sons, Inc., 2001).

Lin, Q.

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin , “Silicon carbide microdisk resonator,” Opt. Lett., 38(8), 1304–1306 (2013).
[CrossRef] [PubMed]

Lipson, M.

Lu, X.

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin , “Silicon carbide microdisk resonator,” Opt. Lett., 38(8), 1304–1306 (2013).
[CrossRef] [PubMed]

Manolatou, C.

Mehregany, M.

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3C silicon carbide thin films,” J. Microelectromechanical Sys.14, 664–672 (2005).
[CrossRef]

Nitkowski, A.

Nix, W. D.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” J. Microelectromechanical Sys.19, 229–238 (2010).
[CrossRef]

Noda, S.

Olsson, R.

M. Ziaei-Moayyed, M. Su, C. Reinke, and R. Olsson, “Silicon carbide phononic crystals for high fq micromechanical resonators,” in “Ultrasonics Symposium (IUS), 2010 IEEE,” (IEEE, 2010), pp. 162–166.
[CrossRef]

Pandraud, G.

G. Pandraud, P. French, and P. Sarro. “Fabrication and characteristics of a PECVD SiC evanescent wave optical sensor,” Sensors and Actuators A: Physical, 142(1), 61–66 (2008).
[CrossRef]

Preston, K.

Reed, G. T.

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Materials Science in Semiconductor Processing3, 367–374 (2000).
[CrossRef]

Reinke, C.

M. Ziaei-Moayyed, M. Su, C. Reinke, and R. Olsson, “Silicon carbide phononic crystals for high fq micromechanical resonators,” in “Ultrasonics Symposium (IUS), 2010 IEEE,” (IEEE, 2010), pp. 162–166.
[CrossRef]

Rumyanstev, S. L.

Y. Goldberg, M. E. Levinshtein, and S. L. Rumyanstev, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, New York (John Wiley and Sons, Inc., 2001).

Sarro, P.

G. Pandraud, P. French, and P. Sarro. “Fabrication and characteristics of a PECVD SiC evanescent wave optical sensor,” Sensors and Actuators A: Physical, 142(1), 61–66 (2008).
[CrossRef]

Saxena, V.

P. Yih, V. Saxena, and A. Steckl, “A review of SiC reactive ion etching in fluorinated plasmas,” physica status solidi (b)202, 605–642 (1997).
[CrossRef]

Schmidt, B. S.

Sharpe, W. N.

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3C silicon carbide thin films,” J. Microelectromechanical Sys.14, 664–672 (2005).
[CrossRef]

Sharping, J. E.

Song, B.-S.

Spencer, M. G.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett.59, 1938–1939 (1991).
[CrossRef]

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett.58, 917–918 (1991).
[CrossRef]

Steckl, A.

P. Yih, V. Saxena, and A. Steckl, “A review of SiC reactive ion etching in fluorinated plasmas,” physica status solidi (b)202, 605–642 (1997).
[CrossRef]

Stryland, E. W. V.

L. L. Chase and E. W. V. Stryland, Handbook of Laser Science and Technology: Suppl. 2: Optical Materials(CRC Press, Boca Raton, FL, 1995), chap. Nonlinear refractive index: inorganic materials, p. 269.

Su, M.

M. Ziaei-Moayyed, M. Su, C. Reinke, and R. Olsson, “Silicon carbide phononic crystals for high fq micromechanical resonators,” in “Ultrasonics Symposium (IUS), 2010 IEEE,” (IEEE, 2010), pp. 162–166.
[CrossRef]

Tanaka, Y.

Tang, X.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett.59, 1938–1939 (1991).
[CrossRef]

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett.58, 917–918 (1991).
[CrossRef]

Turner, A. C.

Upham, J.

Vonsovici, A.

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Materials Science in Semiconductor Processing3, 367–374 (2000).
[CrossRef]

Wongchotigul, K.

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett.58, 917–918 (1991).
[CrossRef]

Yamada, S.

Yih, P.

P. Yih, V. Saxena, and A. Steckl, “A review of SiC reactive ion etching in fluorinated plasmas,” physica status solidi (b)202, 605–642 (1997).
[CrossRef]

Zhang, D.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett.59, 1938–1939 (1991).
[CrossRef]

Ziaei-Moayyed, M.

M. Ziaei-Moayyed, M. Su, C. Reinke, and R. Olsson, “Silicon carbide phononic crystals for high fq micromechanical resonators,” in “Ultrasonics Symposium (IUS), 2010 IEEE,” (IEEE, 2010), pp. 162–166.
[CrossRef]

Zorman, C. A.

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3C silicon carbide thin films,” J. Microelectromechanical Sys.14, 664–672 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett.58, 917–918 (1991).
[CrossRef]

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett.59, 1938–1939 (1991).
[CrossRef]

Electron. Lett. (1)

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the smart cut process,” Electron. Lett.32, 1144–1145 (1996).
[CrossRef]

J. Microelectromechanical Sys. (2)

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3C silicon carbide thin films,” J. Microelectromechanical Sys.14, 664–672 (2005).
[CrossRef]

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” J. Microelectromechanical Sys.19, 229–238 (2010).
[CrossRef]

Materials Science in Semiconductor Processing (1)

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Materials Science in Semiconductor Processing3, 367–374 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett (1)

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin , “Silicon carbide microdisk resonator,” Opt. Lett., 38(8), 1304–1306 (2013).
[CrossRef] [PubMed]

physica status solidi (b) (1)

P. Yih, V. Saxena, and A. Steckl, “A review of SiC reactive ion etching in fluorinated plasmas,” physica status solidi (b)202, 605–642 (1997).
[CrossRef]

Sensors and Actuators A: Physical (1)

G. Pandraud, P. French, and P. Sarro. “Fabrication and characteristics of a PECVD SiC evanescent wave optical sensor,” Sensors and Actuators A: Physical, 142(1), 61–66 (2008).
[CrossRef]

Other (3)

Y. Goldberg, M. E. Levinshtein, and S. L. Rumyanstev, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, New York (John Wiley and Sons, Inc., 2001).

L. L. Chase and E. W. V. Stryland, Handbook of Laser Science and Technology: Suppl. 2: Optical Materials(CRC Press, Boca Raton, FL, 1995), chap. Nonlinear refractive index: inorganic materials, p. 269.

M. Ziaei-Moayyed, M. Su, C. Reinke, and R. Olsson, “Silicon carbide phononic crystals for high fq micromechanical resonators,” in “Ultrasonics Symposium (IUS), 2010 IEEE,” (IEEE, 2010), pp. 162–166.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SEM micrograph of a fabricated SiC microring resonator. SiC beams to the left and right of the resonator are support structures for the tapered fiber. The microring is 2 μm wide by 0.86 μm thick with a radius of 20 μm. The pedestal has a radius of 10 μm and spokes are 0.2 μm wide. The optical field propagates in the microring resonator. Sidewall roughness is visible in the micrograph. Reducing the sidewall roughness will lead to higher optical quality factors.

Fig. 2
Fig. 2

Measured transmission spectrum for 20 μm SiC microring. The inset shows the measured resonance and curve fit of a high quality factor resonance, Q = 1.41 × 104.

Fig. 3
Fig. 3

We identify three different resonating waveguide modes in the spectrum by matching the measured spectrum with the simulated spectrum. The inset shows the major electric field component for the three quasi-TE modes identified in the spectrum: TE11, TE02, and TE12.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = T 0 ( a t ) 2 + 4 a t π 2 FSR 2 ( λ λ 0 ) 2 ( 1 a t ) 2 + 4 a t π 2 FSR 2 ( λ λ 0 ) 2 ,
n ( λ ) = 2.59 2.02 × 10 14 λ 2 + 1.90 × 10 26 λ 4 ,

Metrics