Abstract

Time-averaged fringe patterns in vibration testing of MEMS (microelectromechanical systems) are unaffected by carrier displacements. They are additive superimposition type moirés. These features and Hilbert transform vulnerability to additive trend are utilized for visualization of centers of dark Bessel fringes. Two frames with shifted carrier are subtracted for background and noise correction. Two normalized images of this pattern are calculated with slightly different bias levels and subtracted. The method does not require precise phase shifting between two frames, cosinusoidal carrier and linear recording. It enables detecting light power variations and phase shifting nonuniformities. Synthetic and experimental results corroborate the robustness of the method.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Stetson, “Holographic vibration analysis,” in Holographic Nondestructive Testing, R.E. Erf ed. (Academic Press, 1984).
  2. R. J. Pryputniewicz and K. A. Stetson, “Measurement of vibration patterns using electro-optic holography,” Proc. SPIE1162, 456–467 (1990).
    [CrossRef]
  3. R. J. Pryputniewicz, “A hybrid approach to deformation analysis,” Proc. SPIE2342, 282–296 (1994).
    [CrossRef]
  4. A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” Proc. SPIE5145, 1–16 (2003).
    [CrossRef]
  5. L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
    [CrossRef]
  6. K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng.45(8), 085602 (2006).
    [CrossRef]
  7. S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE4400, 51–60 (2001).
    [CrossRef]
  8. A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt.46(21), 4613–4624 (2007).
    [CrossRef] [PubMed]
  9. K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt.49(19), 3640–3651 (2010).
    [CrossRef] [PubMed]
  10. M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50(28), 5513–5523 (2011).
    [CrossRef] [PubMed]
  11. C. Gorecki, M. Jozwik, and L. Salbut, “Multifunctional interferometric platform for on-chip testing the micromechanical properties of MEMS/MOEMS,” J. Microlith., Microfab., Microsyst.4(4), 041402 (2005).
  12. E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(4), 697–706 (2006).
    [PubMed]
  13. M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
    [CrossRef]
  14. S. Ellingsrud and G. O. Rosvold, “Analysis of data-based TV-holography system used to measure small vibration amplitudes,” J. Opt. Soc. Am. A9(2), 237–251 (1992).
    [CrossRef]
  15. J. D. Hovanesian and Y. Y. Hung, “Moiré contour-sum, contour-difference, and vibration analysis of arbitrary objects,” Appl. Opt.10(12), 2734–2738 (1971).
    [CrossRef] [PubMed]
  16. G. O. Rosvold, “Video-based vibration analysis using projected fringes,” Appl. Opt.33(5), 775–786 (1994).
    [CrossRef] [PubMed]
  17. M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain45, (2009), doi: (and references therein).
    [CrossRef]
  18. J. Li, X.-Y. Su, and L.-R. Guo, “Improved Fourier transform profilometry for the automatic measurement of the three-dimensional object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
    [CrossRef]
  19. O. Bryngdahl, “Characteristics of superposed patterns in optics,” J. Opt. Soc. Am.66(2), 87–94 (1976).
    [CrossRef]
  20. K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, 1993).
  21. I. Amidror and R. D. Hersch, “The role of Fourier theory and of modulation in the prediction of visible moiré effects,” J. Mod. Opt.56(9), 1103–1118 (2009).
    [CrossRef]
  22. K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express19(27), 26065–26078 (2011).
    [CrossRef] [PubMed]
  23. J. A. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun.224(4–6), 221–227 (2003).
    [CrossRef]
  24. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt.48(36), 6862–6869 (2009).
    [CrossRef] [PubMed]
  25. M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express20(21), 23463–23479 (2012).
    [CrossRef] [PubMed]
  26. J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, “Image restoration method based on Hilbert transform for full-field optical coherence tomography,” Appl. Opt.47(3), 459–466 (2008).
    [CrossRef] [PubMed]
  27. M. S. Hrebesh, “Full-field and single shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Technol.2012, 435408 (2012).
  28. L. Xiong and S. Jia, “Phase-error analysis and elimination for nonsinusoidal waveforms in Hilbert transform digital-fringe projection profilometry,” Opt. Lett.34(15), 2363–2365 (2009).
    [CrossRef] [PubMed]
  29. M. Chen, H. Guo, and C. Wei, “Algorithm immune to tilt phase-shifting error for phase-shifting interferometers,” Appl. Opt.39(22), 3894–3898 (2000).
    [CrossRef] [PubMed]
  30. A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Tilt-compensating algorithm for phase-shift interferometry,” Appl. Opt.41(13), 2435–2439 (2002).
    [CrossRef] [PubMed]
  31. K. Patorski, A. Styk, L. Bruno, and P. Szwaykowski, “Tilt-shift error detection in phase-shifting interferometry,” Opt. Express14(12), 5232–5249 (2006).
    [CrossRef] [PubMed]
  32. Q. Yuan, Z. Gao, Y. Zhou, G. Chu, and C. Zhang, “Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical aperture spherical surfaces,” Opt. Lasers Eng.50(11), 1568–1574 (2012).
    [CrossRef]
  33. J. S. Lim, J. Kim, and M. S. Chung, “Additive type moire with computer image processing,” Appl. Opt.28(13), 2677–2680 (1989).
    [CrossRef] [PubMed]
  34. R. Eschbach, “Generation of moiré of nonlinear transfer characteristics,” J. Opt. Soc. Am. A5(11), 1828–1835 (1988).
    [CrossRef]
  35. L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control35(3), 249–254 (2006).
  36. M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng.47(7–8), 768–773 (2009).
    [CrossRef]
  37. D. W. Robinson and G. T. Reid, eds., Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (Institute of Physics Publishing, 1993).
  38. W. Osten, Digital Processing and Evaluation of Interference Images (Akademie Verlag, 1991).
  39. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A18(8), 1862–1870 (2001).
    [CrossRef] [PubMed]
  40. K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. A18(8), 1871–1881 (2001).
    [CrossRef] [PubMed]
  41. S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” in Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing (Institute of Electrical and Electronics Engineers, 2008), pp. 1313–1316.
    [CrossRef]
  42. M. Trusiak and K. Patorski, “Space domain interpretation of incoherent moiré superimpositions using FABEMD,” Proc. SPIE 8697, 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 869704 (December 18, 2012).
    [CrossRef]
  43. M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. (to be published).
  44. N. E. Molin and K. A. Stetson, “Measuring combination mode vibration patterns by hologram interferometry,”J. Phys. E.2(7), 609–612 (1969).
    [CrossRef]
  45. M. Ragulskis, L. Saunoriene, and R. Maskeliunas, “The structure of moiré grating lines and its influence to time-averaged fringes,” Exp. Tech.33(2), 60–64 (2009).
    [CrossRef]
  46. S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt.10(7), 1575–1580 (1971).
    [CrossRef] [PubMed]
  47. K. Patorski and L. Salbut, “Optical differentiation of distorted gratings using Talbot and double diffraction interferometry,” Opt. Acta (Lond.)32(11), 1323–1331 (1985).
    [CrossRef]
  48. K. Patorski and S. Kozak, “Self-imaging with nonparabolic approximation of spherical wave fronts,” J. Opt. Soc. Am. A5(8), 1322–1327 (1988).
    [CrossRef]
  49. K. Patorski, “Moire methods in interferometry,” Opt. Lasers Eng.8(3-4), 147–170 (1988).
    [CrossRef]
  50. K. Patorski, “The self-imaging phenomenon and applications,” in Progress in Optics, E. Wolf, ed., vol. 27, 1–103 (North Holland, 1989).
  51. J. A. Lin, J. Hsu, and S. G. Shiue, “Quantitative three-beam Ronchi test,” Appl. Opt.29(13), 1912–1918 (1990).
    [CrossRef] [PubMed]

2012 (3)

M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express20(21), 23463–23479 (2012).
[CrossRef] [PubMed]

M. S. Hrebesh, “Full-field and single shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Technol.2012, 435408 (2012).

Q. Yuan, Z. Gao, Y. Zhou, G. Chu, and C. Zhang, “Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical aperture spherical surfaces,” Opt. Lasers Eng.50(11), 1568–1574 (2012).
[CrossRef]

2011 (2)

2010 (2)

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt.49(19), 3640–3651 (2010).
[CrossRef] [PubMed]

2009 (6)

M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain45, (2009), doi: (and references therein).
[CrossRef]

I. Amidror and R. D. Hersch, “The role of Fourier theory and of modulation in the prediction of visible moiré effects,” J. Mod. Opt.56(9), 1103–1118 (2009).
[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt.48(36), 6862–6869 (2009).
[CrossRef] [PubMed]

L. Xiong and S. Jia, “Phase-error analysis and elimination for nonsinusoidal waveforms in Hilbert transform digital-fringe projection profilometry,” Opt. Lett.34(15), 2363–2365 (2009).
[CrossRef] [PubMed]

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng.47(7–8), 768–773 (2009).
[CrossRef]

M. Ragulskis, L. Saunoriene, and R. Maskeliunas, “The structure of moiré grating lines and its influence to time-averaged fringes,” Exp. Tech.33(2), 60–64 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (4)

K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng.45(8), 085602 (2006).
[CrossRef]

E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(4), 697–706 (2006).
[PubMed]

K. Patorski, A. Styk, L. Bruno, and P. Szwaykowski, “Tilt-shift error detection in phase-shifting interferometry,” Opt. Express14(12), 5232–5249 (2006).
[CrossRef] [PubMed]

L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control35(3), 249–254 (2006).

2005 (1)

C. Gorecki, M. Jozwik, and L. Salbut, “Multifunctional interferometric platform for on-chip testing the micromechanical properties of MEMS/MOEMS,” J. Microlith., Microfab., Microsyst.4(4), 041402 (2005).

2003 (3)

A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” Proc. SPIE5145, 1–16 (2003).
[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
[CrossRef]

J. A. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun.224(4–6), 221–227 (2003).
[CrossRef]

2002 (1)

2001 (3)

2000 (1)

1994 (2)

R. J. Pryputniewicz, “A hybrid approach to deformation analysis,” Proc. SPIE2342, 282–296 (1994).
[CrossRef]

G. O. Rosvold, “Video-based vibration analysis using projected fringes,” Appl. Opt.33(5), 775–786 (1994).
[CrossRef] [PubMed]

1992 (1)

1990 (3)

J. Li, X.-Y. Su, and L.-R. Guo, “Improved Fourier transform profilometry for the automatic measurement of the three-dimensional object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

R. J. Pryputniewicz and K. A. Stetson, “Measurement of vibration patterns using electro-optic holography,” Proc. SPIE1162, 456–467 (1990).
[CrossRef]

J. A. Lin, J. Hsu, and S. G. Shiue, “Quantitative three-beam Ronchi test,” Appl. Opt.29(13), 1912–1918 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (3)

1985 (1)

K. Patorski and L. Salbut, “Optical differentiation of distorted gratings using Talbot and double diffraction interferometry,” Opt. Acta (Lond.)32(11), 1323–1331 (1985).
[CrossRef]

1976 (1)

1971 (2)

1969 (1)

N. E. Molin and K. A. Stetson, “Measuring combination mode vibration patterns by hologram interferometry,”J. Phys. E.2(7), 609–612 (1969).
[CrossRef]

Aleksa, A.

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng.47(7–8), 768–773 (2009).
[CrossRef]

Amidror, I.

I. Amidror and R. D. Hersch, “The role of Fourier theory and of modulation in the prediction of visible moiré effects,” J. Mod. Opt.56(9), 1103–1118 (2009).
[CrossRef]

Apostol, D.

Bernini, M. B.

Bone, D. J.

Bosseboeuf, A.

A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” Proc. SPIE5145, 1–16 (2003).
[CrossRef]

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE4400, 51–60 (2001).
[CrossRef]

Bruno, L.

Bryngdahl, O.

Chen, M.

Choi, E. S.

Choi, W. J.

Chu, G.

Q. Yuan, Z. Gao, Y. Zhou, G. Chu, and C. Zhang, “Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical aperture spherical surfaces,” Opt. Lasers Eng.50(11), 1568–1574 (2012).
[CrossRef]

Chung, M. S.

Damian, V.

Danaie, K.

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE4400, 51–60 (2001).
[CrossRef]

Dean, T.

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
[CrossRef]

Dobroiu, A.

Ellingsrud, S.

Eschbach, R.

Federico, A.

Freidhoff, C. B.

E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(4), 697–706 (2006).
[PubMed]

Gao, Z.

Q. Yuan, Z. Gao, Y. Zhou, G. Chu, and C. Zhang, “Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical aperture spherical surfaces,” Opt. Lasers Eng.50(11), 1568–1574 (2012).
[CrossRef]

Gorecki, C.

C. Gorecki, M. Jozwik, and L. Salbut, “Multifunctional interferometric platform for on-chip testing the micromechanical properties of MEMS/MOEMS,” J. Microlith., Microfab., Microsyst.4(4), 041402 (2005).

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
[CrossRef]

Guo, H.

Guo, L.-R.

J. Li, X.-Y. Su, and L.-R. Guo, “Improved Fourier transform profilometry for the automatic measurement of the three-dimensional object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

Hersch, R. D.

I. Amidror and R. D. Hersch, “The role of Fourier theory and of modulation in the prediction of visible moiré effects,” J. Mod. Opt.56(9), 1103–1118 (2009).
[CrossRef]

Hong, E.

E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(4), 697–706 (2006).
[PubMed]

Hovanesian, J. D.

Hrebesh, M. S.

M. S. Hrebesh, “Full-field and single shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Technol.2012, 435408 (2012).

Hsu, J.

Hung, Y. Y.

Jacobelli, A.

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
[CrossRef]

Jia, S.

Jozwik, M.

C. Gorecki, M. Jozwik, and L. Salbut, “Multifunctional interferometric platform for on-chip testing the micromechanical properties of MEMS/MOEMS,” J. Microlith., Microfab., Microsyst.4(4), 041402 (2005).

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
[CrossRef]

Kacperski, J.

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
[CrossRef]

Kaufmann, G. H.

Kim, J.

Kozak, S.

Krishnaswamy, S. V.

E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(4), 697–706 (2006).
[PubMed]

Larkin, K. G.

Lee, B. H.

Li, J.

J. Li, X.-Y. Su, and L.-R. Guo, “Improved Fourier transform profilometry for the automatic measurement of the three-dimensional object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

Lim, J. S.

Lin, J. A.

Maskeliunas, R.

M. Ragulskis, L. Saunoriene, and R. Maskeliunas, “The structure of moiré grating lines and its influence to time-averaged fringes,” Exp. Tech.33(2), 60–64 (2009).
[CrossRef]

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng.47(7–8), 768–773 (2009).
[CrossRef]

Miao, J. M.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Molin, N. E.

N. E. Molin and K. A. Stetson, “Measuring combination mode vibration patterns by hologram interferometry,”J. Phys. E.2(7), 609–612 (1969).
[CrossRef]

Na, J.

Nascov, V.

Navickas, Z.

M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain45, (2009), doi: (and references therein).
[CrossRef]

Oldfield, M. A.

Olfatnia, M.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Ong, L. S.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Patorski, K.

M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express20(21), 23463–23479 (2012).
[CrossRef] [PubMed]

K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express19(27), 26065–26078 (2011).
[CrossRef] [PubMed]

M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50(28), 5513–5523 (2011).
[CrossRef] [PubMed]

K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt.49(19), 3640–3651 (2010).
[CrossRef] [PubMed]

A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt.46(21), 4613–4624 (2007).
[CrossRef] [PubMed]

K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng.45(8), 085602 (2006).
[CrossRef]

K. Patorski, A. Styk, L. Bruno, and P. Szwaykowski, “Tilt-shift error detection in phase-shifting interferometry,” Opt. Express14(12), 5232–5249 (2006).
[CrossRef] [PubMed]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
[CrossRef]

K. Patorski, “Moire methods in interferometry,” Opt. Lasers Eng.8(3-4), 147–170 (1988).
[CrossRef]

K. Patorski and S. Kozak, “Self-imaging with nonparabolic approximation of spherical wave fronts,” J. Opt. Soc. Am. A5(8), 1322–1327 (1988).
[CrossRef]

K. Patorski and L. Salbut, “Optical differentiation of distorted gratings using Talbot and double diffraction interferometry,” Opt. Acta (Lond.)32(11), 1323–1331 (1985).
[CrossRef]

M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. (to be published).

Petitgrand, S.

A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” Proc. SPIE5145, 1–16 (2003).
[CrossRef]

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE4400, 51–60 (2001).
[CrossRef]

Pokorski, K.

Pryputniewicz, R. J.

R. J. Pryputniewicz, “A hybrid approach to deformation analysis,” Proc. SPIE2342, 282–296 (1994).
[CrossRef]

R. J. Pryputniewicz and K. A. Stetson, “Measurement of vibration patterns using electro-optic holography,” Proc. SPIE1162, 456–467 (1990).
[CrossRef]

Quiroga, J. A.

J. A. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun.224(4–6), 221–227 (2003).
[CrossRef]

Ragulskis, M.

M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain45, (2009), doi: (and references therein).
[CrossRef]

M. Ragulskis, L. Saunoriene, and R. Maskeliunas, “The structure of moiré grating lines and its influence to time-averaged fringes,” Exp. Tech.33(2), 60–64 (2009).
[CrossRef]

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng.47(7–8), 768–773 (2009).
[CrossRef]

L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control35(3), 249–254 (2006).

Rosvold, G. O.

Ryu, S. Y.

Salbut, L.

C. Gorecki, M. Jozwik, and L. Salbut, “Multifunctional interferometric platform for on-chip testing the micromechanical properties of MEMS/MOEMS,” J. Microlith., Microfab., Microsyst.4(4), 041402 (2005).

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
[CrossRef]

K. Patorski and L. Salbut, “Optical differentiation of distorted gratings using Talbot and double diffraction interferometry,” Opt. Acta (Lond.)32(11), 1323–1331 (1985).
[CrossRef]

Saunoriene, L.

M. Ragulskis, L. Saunoriene, and R. Maskeliunas, “The structure of moiré grating lines and its influence to time-averaged fringes,” Exp. Tech.33(2), 60–64 (2009).
[CrossRef]

L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control35(3), 249–254 (2006).

Servin, M.

J. A. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun.224(4–6), 221–227 (2003).
[CrossRef]

Shiue, S. G.

Singh, V. R.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Smith, R.

E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(4), 697–706 (2006).
[PubMed]

Stetson, K. A.

R. J. Pryputniewicz and K. A. Stetson, “Measurement of vibration patterns using electro-optic holography,” Proc. SPIE1162, 456–467 (1990).
[CrossRef]

N. E. Molin and K. A. Stetson, “Measuring combination mode vibration patterns by hologram interferometry,”J. Phys. E.2(7), 609–612 (1969).
[CrossRef]

Styk, A.

Su, X.-Y.

J. Li, X.-Y. Su, and L.-R. Guo, “Improved Fourier transform profilometry for the automatic measurement of the three-dimensional object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

Suzuki, T.

Szwaykowski, P.

Trolier-McKinstry, S.

E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(4), 697–706 (2006).
[PubMed]

Trusiak, M.

Wei, C.

Wielgus, M.

Xiong, L.

Xu, T.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Yahiaoui, R.

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE4400, 51–60 (2001).
[CrossRef]

Yokozeki, S.

Yuan, Q.

Q. Yuan, Z. Gao, Y. Zhou, G. Chu, and C. Zhang, “Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical aperture spherical surfaces,” Opt. Lasers Eng.50(11), 1568–1574 (2012).
[CrossRef]

Zhang, C.

Q. Yuan, Z. Gao, Y. Zhou, G. Chu, and C. Zhang, “Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical aperture spherical surfaces,” Opt. Lasers Eng.50(11), 1568–1574 (2012).
[CrossRef]

Zhou, Y.

Q. Yuan, Z. Gao, Y. Zhou, G. Chu, and C. Zhang, “Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical aperture spherical surfaces,” Opt. Lasers Eng.50(11), 1568–1574 (2012).
[CrossRef]

Adv. Opt. Technol. (1)

M. S. Hrebesh, “Full-field and single shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Adv. Opt. Technol.2012, 435408 (2012).

Appl. Opt. (12)

J. S. Lim, J. Kim, and M. S. Chung, “Additive type moire with computer image processing,” Appl. Opt.28(13), 2677–2680 (1989).
[CrossRef] [PubMed]

M. Chen, H. Guo, and C. Wei, “Algorithm immune to tilt phase-shifting error for phase-shifting interferometers,” Appl. Opt.39(22), 3894–3898 (2000).
[CrossRef] [PubMed]

A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Tilt-compensating algorithm for phase-shift interferometry,” Appl. Opt.41(13), 2435–2439 (2002).
[CrossRef] [PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt.48(36), 6862–6869 (2009).
[CrossRef] [PubMed]

J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, “Image restoration method based on Hilbert transform for full-field optical coherence tomography,” Appl. Opt.47(3), 459–466 (2008).
[CrossRef] [PubMed]

A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt.46(21), 4613–4624 (2007).
[CrossRef] [PubMed]

K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt.49(19), 3640–3651 (2010).
[CrossRef] [PubMed]

M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50(28), 5513–5523 (2011).
[CrossRef] [PubMed]

J. D. Hovanesian and Y. Y. Hung, “Moiré contour-sum, contour-difference, and vibration analysis of arbitrary objects,” Appl. Opt.10(12), 2734–2738 (1971).
[CrossRef] [PubMed]

G. O. Rosvold, “Video-based vibration analysis using projected fringes,” Appl. Opt.33(5), 775–786 (1994).
[CrossRef] [PubMed]

S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt.10(7), 1575–1580 (1971).
[CrossRef] [PubMed]

J. A. Lin, J. Hsu, and S. G. Shiue, “Quantitative three-beam Ronchi test,” Appl. Opt.29(13), 1912–1918 (1990).
[CrossRef] [PubMed]

Exp. Tech. (1)

M. Ragulskis, L. Saunoriene, and R. Maskeliunas, “The structure of moiré grating lines and its influence to time-averaged fringes,” Exp. Tech.33(2), 60–64 (2009).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(4), 697–706 (2006).
[PubMed]

Inf. Technol. Control (1)

L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control35(3), 249–254 (2006).

J. Microlith., Microfab., Microsyst. (1)

C. Gorecki, M. Jozwik, and L. Salbut, “Multifunctional interferometric platform for on-chip testing the micromechanical properties of MEMS/MOEMS,” J. Microlith., Microfab., Microsyst.4(4), 041402 (2005).

J. Micromech. Microeng. (1)

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

J. Mod. Opt. (1)

I. Amidror and R. D. Hersch, “The role of Fourier theory and of modulation in the prediction of visible moiré effects,” J. Mod. Opt.56(9), 1103–1118 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

J. Phys. E. (1)

N. E. Molin and K. A. Stetson, “Measuring combination mode vibration patterns by hologram interferometry,”J. Phys. E.2(7), 609–612 (1969).
[CrossRef]

Opt. Acta (Lond.) (1)

K. Patorski and L. Salbut, “Optical differentiation of distorted gratings using Talbot and double diffraction interferometry,” Opt. Acta (Lond.)32(11), 1323–1331 (1985).
[CrossRef]

Opt. Commun. (1)

J. A. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun.224(4–6), 221–227 (2003).
[CrossRef]

Opt. Eng. (2)

K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng.45(8), 085602 (2006).
[CrossRef]

J. Li, X.-Y. Su, and L.-R. Guo, “Improved Fourier transform profilometry for the automatic measurement of the three-dimensional object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (4)

Q. Yuan, Z. Gao, Y. Zhou, G. Chu, and C. Zhang, “Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical aperture spherical surfaces,” Opt. Lasers Eng.50(11), 1568–1574 (2012).
[CrossRef]

M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. (to be published).

K. Patorski, “Moire methods in interferometry,” Opt. Lasers Eng.8(3-4), 147–170 (1988).
[CrossRef]

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng.47(7–8), 768–773 (2009).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (5)

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE4400, 51–60 (2001).
[CrossRef]

R. J. Pryputniewicz and K. A. Stetson, “Measurement of vibration patterns using electro-optic holography,” Proc. SPIE1162, 456–467 (1990).
[CrossRef]

R. J. Pryputniewicz, “A hybrid approach to deformation analysis,” Proc. SPIE2342, 282–296 (1994).
[CrossRef]

A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” Proc. SPIE5145, 1–16 (2003).
[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE5145, 23–32 (2003).
[CrossRef]

Strain (1)

M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain45, (2009), doi: (and references therein).
[CrossRef]

Other (7)

K. A. Stetson, “Holographic vibration analysis,” in Holographic Nondestructive Testing, R.E. Erf ed. (Academic Press, 1984).

K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, 1993).

D. W. Robinson and G. T. Reid, eds., Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (Institute of Physics Publishing, 1993).

W. Osten, Digital Processing and Evaluation of Interference Images (Akademie Verlag, 1991).

S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” in Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing (Institute of Electrical and Electronics Engineers, 2008), pp. 1313–1316.
[CrossRef]

M. Trusiak and K. Patorski, “Space domain interpretation of incoherent moiré superimpositions using FABEMD,” Proc. SPIE 8697, 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 869704 (December 18, 2012).
[CrossRef]

K. Patorski, “The self-imaging phenomenon and applications,” in Progress in Optics, E. Wolf, ed., vol. 27, 1–103 (North Holland, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Exemplary time-averaged interferogram for a circular active silicon membrane [5,9,10] vibrating at resonance frequency 659 kHz (a), its magnified local region (b), and the result of subtracting two time-averaged frames with mutual carrier phase shift by π (c) for the same local region as shown in (b). Note significant improvement of the pattern quality.

Fig. 2
Fig. 2

Flow chart of the proposed algorithm.

Fig. 3
Fig. 3

Results of processing simulated cosinusoidal fringe carrier cos(x) with amplitude modulation by the Bessel function J0(x,y): (a) frame1, (b) dif, (c) modu1, (d) norm1, (e) modu2, (f) norm2, (g) dif_m, (h) dif_n; please see text for symbol explanations. Noise free, DC = 0, bias = 0.025 (i.e., in the double normalization process the DC difference between the frames has been increased by 2.5% of the amplitude value).

Fig. 4
Fig. 4

Horizontal cross section (256th pixel row) of the contour pattern of centers of dark Bessel fringes, Fig. 3(h).

Fig. 5
Fig. 5

(a) dif_m and (b) dif_n in the case of Fig. 3 but with noise SNR = 2. Root mean square (RMS) value computed for dif_n with Fig. 3(h) as a reference is equal to 0.21.

Fig. 6
Fig. 6

Calculated algorithm output results: (a) dif_m and (b) dif_n for nonuniform DC level change between frame1 and frame2 described by (c) DC = sin(x); (d) background intensity distribution extracted from dif using the FABEMD algorithm, (e) dif_m and (f) dif_n computed after background (residue) removal from dif. Note that extracted DC term is of opposite sign to the one simulated and added to frame2, Fig. 6(c), as it was subtracted generating the dif pattern.

Fig. 7
Fig. 7

Images dif_n in the case of various data recording nonlinearities: (a) linear detection, (b) b = 0.5, c = d = e = 0, (c) b = 1.5, c = d = e = 0, (d) b = c = 1, c = d = e = 0, (e) b = c = d = 1, e = 0 (f) case with 5th order nonlinearities with all coefficients equal to 1. Corresponding RMS values are equal to 0.02, 0.08, 0.15, 0.2 and 0.27, respectively.

Fig. 8
Fig. 8

The results of processing two time-averaged frames with a binary amplitude carrier (mutual phase shift of π) leading to Bessel fringe contouring. (a) frame1, (b) dif, (c) modu1, (d) norm1, (e) dif_m, (f) dif_n. Note considerable departures of modulation distribution modu1 from previously presented one, Fig. 3(c).

Fig. 9
Fig. 9

Results of subsequent computation stages and final contours in the case of the tilt-shift error producing 1% change of the spatial period of second frame. Figures 9(a)-9(f) show, correspondingly: frame1, dif, modu2, norm2, dif_m and dif_n (RMS = 0.19).

Fig. 10
Fig. 10

Results of subsequent computation stages and final contours in the case of single-frame processing of experimental data. Figures 10(a)-10(d) show, correspondingly: frame1 with nonuniform background intensity, modu1 calculated for frame1 with bias removed using the FABEMD algorithm, dif_m and dif_n.

Fig. 11
Fig. 11

Set of four π/2 phase shifted experimental time-averaged frames (frame2-frame5). First frame (frame1, reference pattern with phase shift equal to 0) is shown in Fig. 10(a).

Fig. 12
Fig. 12

(a) Result dif(1,3) of subtracting π phase shifted frame1 and frame3 (Fig. 10(a) and Fig. 11(b)), (b) modulation distribution modu(1,3) of dif(1,3), (c) difference between modulation distributions dif_m(1,3) calculated with slightly different DC (bias = 0.025), and (d) difference between two normalized fringe patterns, denoted as dif_n(1,3).

Fig. 13
Fig. 13

(a) Result dif(2,4) of subtracting π phase shifted frame2 and frame4 (Figs. 11(a) and 11(c)), and its subsequent computation stages (b) modu(2,4), (c) dif_m(2,4) and (d) final contours dif_n(2,4).

Fig. 14
Fig. 14

(a) Result dif(3,5) of subtracting π phase shifted frame3 and frame5 (Figs. 11(b) and 11(d)), and its subsequent computation stages (b) modu(3,5), (c) dif_m(3,5) and (d) final contours dif_n(3,5).

Fig. 15
Fig. 15

(a) High-pass filtered pattern dif(1,3) using the FABEMD algorithm with residue excluded for the background illumination error correction, (b) modulation distribution of corrected fringe pattern, (c) dif_m and (d) final contours dif_n.

Fig. 16
Fig. 16

(a) Time-averaged frame for a circular silicon micro-membrane vibrating at 930 kHz and the results of two frame Hilbert transform processing: (b) modulation distribution and (c) dark fringe center contour lines.

Fig. 17
Fig. 17

(a) Time-averaged frame for a circular silicon micro-membrane vibrating at 365 kHz and the results of two frame Hilbert transform processing: (b) modulation distribution and (c) dark fringe center contour lines.

Fig. 18
Fig. 18

(a) Time-averaged frame of a square silicon micro-membrane vibrating at 172 kHz and the results of two frame Hilbert transform processing: (b) modulation distribution and (c) dark fringe center contour lines.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I vib (x,y)=K(x,y){1+ C stat (x,y) J 0 [(4π/λ) a 0 (x,y)]cos φ vib (x,y)},
I 2frame (x,y)=2K(x,y) C stat (x,y) J 0 [(4π/λ) a 0 (x,y)]cos φ vib (x,y),
frame1_nl_rec=frame1+b (frame1) 2 +c (frame1) 3 +d (frame1) 4 +e (frame1) 5 ; frame2_nl_rec=frame2+b (frame2) 2 +c (frame2) 3 +d (frame2) 4 +e (frame2) 5 ;

Metrics