Abstract

Micro-machining is the most promising method for KH2PO4 crystal to mitigate the surface damage growth in high power laser system. In this work, spherical mitigation pit is fabricated by micro-milling with an efficient machining procedure. The light intensification caused by rear surface features before and after mitigation is numerically modeled based on the finite-difference time-domain method. The results indicate that the occurrence of total internal reflections should be responsible for the largest light intensification inside the crystal. For spherical pits after mitigation, the light intensification can be greatly alleviated by preventing the occurrence of total internal reflections. The light intensification caused by spherical mitigation pit is strongly dependent on the width-depth ratio and it is suggested that the width-depth ratio of spherical mitigation pit must be devised to be larger than 5.0 to achieve the minimal light intensification for the mitigation of surface damage growth. Laser damage tests for KH2PO4 crystal validate that the laser damage resistance of initially damaged surface can be retrieved to near the level of ideal surface by replacing initial damage site with predesigned mitigation pit.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev.47, 113–152 (2002).
    [CrossRef]
  2. S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation,” Opt. Express17(24), 21652–21665 (2009).
    [CrossRef] [PubMed]
  3. R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
    [CrossRef]
  4. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
    [CrossRef] [PubMed]
  5. G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express17(13), 10434–10456 (2009).
    [CrossRef] [PubMed]
  6. J. A. Jarboe, J. J. Adams, and R. P. Hackel, “Analysis of output surface damage resulting from single 351nm, 3ns pulses on sub-nanosecond laser conditioned KD2PO4 crystals,” Proc. SPIE6720, 67200J, 67200J-12 (2007).
    [CrossRef]
  7. R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005).
    [CrossRef] [PubMed]
  8. F. Guillet, B. Bertussi, L. Lamaignère, and C. Maunier, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE7842, 78421T, 78421T-5 (2010).
    [CrossRef]
  9. F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE6720, 672008, 672008-9 (2007).
    [CrossRef]
  10. S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001).
    [CrossRef]
  11. C. J. Stolz, “The National Ignition Facility: The Path to a Carbon-Free Energy Future,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.370(1973), 4115–4129 (2012).
    [CrossRef]
  12. L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
    [CrossRef]
  13. P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006).
    [CrossRef]
  14. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12(4), 661–664 (1973).
    [CrossRef] [PubMed]
  15. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A18(10), 2607–2616 (2001).
    [CrossRef] [PubMed]
  16. L. Zhang, L. Huang, S. J. Fan, G. X. Bai, K. F. Li, W. Chen, and L. L. Hu, “Distribution of electric field and energy flux around the cracks on the surfaces of Nd-doped phosphate glasses,” Appl. Opt.49(35), 6668–6674 (2010).
    [PubMed]
  17. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt.50(9), C457–C462 (2011).
    [CrossRef] [PubMed]
  18. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings,” Appl. Opt.50(9), C373–C381 (2011).
    [CrossRef] [PubMed]
  19. C. J. Stolz, J. Adams, M. D. Shirk, M. A. Norton, and T. L. Weiland, “Engineering meter-scale laser resistant coatings for the near IR,” Proc. SPIE5963, 59630Y, 59630Y-9 (2005).
    [CrossRef]
  20. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Academic, 2000).
  21. M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys.110(11), 113103 (2011).
    [CrossRef] [PubMed]
  22. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt.45(7), 1594–1601 (2006).
    [CrossRef] [PubMed]
  23. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys.54(7), 601–607 (1986).
    [CrossRef]

2012

C. J. Stolz, “The National Ignition Facility: The Path to a Carbon-Free Energy Future,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.370(1973), 4115–4129 (2012).
[CrossRef]

2011

2010

L. Zhang, L. Huang, S. J. Fan, G. X. Bai, K. F. Li, W. Chen, and L. L. Hu, “Distribution of electric field and energy flux around the cracks on the surfaces of Nd-doped phosphate glasses,” Appl. Opt.49(35), 6668–6674 (2010).
[PubMed]

F. Guillet, B. Bertussi, L. Lamaignère, and C. Maunier, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE7842, 78421T, 78421T-5 (2010).
[CrossRef]

2009

2007

J. A. Jarboe, J. J. Adams, and R. P. Hackel, “Analysis of output surface damage resulting from single 351nm, 3ns pulses on sub-nanosecond laser conditioned KD2PO4 crystals,” Proc. SPIE6720, 67200J, 67200J-12 (2007).
[CrossRef]

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE6720, 672008, 672008-9 (2007).
[CrossRef]

2006

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt.45(7), 1594–1601 (2006).
[CrossRef] [PubMed]

2005

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
[CrossRef]

C. J. Stolz, J. Adams, M. D. Shirk, M. A. Norton, and T. L. Weiland, “Engineering meter-scale laser resistant coatings for the near IR,” Proc. SPIE5963, 59630Y, 59630Y-9 (2005).
[CrossRef]

R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005).
[CrossRef] [PubMed]

2004

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

2003

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

2002

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

2001

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001).
[CrossRef]

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A18(10), 2607–2616 (2001).
[CrossRef] [PubMed]

1986

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys.54(7), 601–607 (1986).
[CrossRef]

1973

Adams, J.

C. J. Stolz, J. Adams, M. D. Shirk, M. A. Norton, and T. L. Weiland, “Engineering meter-scale laser resistant coatings for the near IR,” Proc. SPIE5963, 59630Y, 59630Y-9 (2005).
[CrossRef]

Adams, J. J.

J. A. Jarboe, J. J. Adams, and R. P. Hackel, “Analysis of output surface damage resulting from single 351nm, 3ns pulses on sub-nanosecond laser conditioned KD2PO4 crystals,” Proc. SPIE6720, 67200J, 67200J-12 (2007).
[CrossRef]

Bai, G. X.

Bertussi, B.

F. Guillet, B. Bertussi, L. Lamaignère, and C. Maunier, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE7842, 78421T, 78421T-5 (2010).
[CrossRef]

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE6720, 672008, 672008-9 (2007).
[CrossRef]

Bloembergen, N.

Bostedt, C.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
[CrossRef]

Brusasco, R. B.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Bumham, A.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001).
[CrossRef]

Burnham, A. K.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Carr, W.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006).
[CrossRef]

Chase, L. L.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001).
[CrossRef]

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A18(10), 2607–2616 (2001).
[CrossRef] [PubMed]

Chen, M. J.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys.110(11), 113103 (2011).
[CrossRef] [PubMed]

Chen, W.

Cheng, J.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys.110(11), 113103 (2011).
[CrossRef] [PubMed]

De Yoreo, J. J.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

DeMange, P.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
[CrossRef]

R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005).
[CrossRef] [PubMed]

Demos, S. G.

R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005).
[CrossRef] [PubMed]

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001).
[CrossRef]

Donohue, E. E.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Draggoo, V.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006).
[CrossRef]

Duchateau, G.

Fan, S. J.

Feit, M. D.

Génin, F. Y.

Geraghty, P.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006).
[CrossRef]

Grundler, W.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Guillet, F.

F. Guillet, B. Bertussi, L. Lamaignère, and C. Maunier, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE7842, 78421T, 78421T-5 (2010).
[CrossRef]

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE6720, 672008, 672008-9 (2007).
[CrossRef]

Hackel, R.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006).
[CrossRef]

Hackel, R. P.

J. A. Jarboe, J. J. Adams, and R. P. Hackel, “Analysis of output surface damage resulting from single 351nm, 3ns pulses on sub-nanosecond laser conditioned KD2PO4 crystals,” Proc. SPIE6720, 67200J, 67200J-12 (2007).
[CrossRef]

Hawley, D.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys.54(7), 601–607 (1986).
[CrossRef]

Hrubesh, L. W.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Hu, L. L.

Huang, L.

Jarboe, J. A.

J. A. Jarboe, J. J. Adams, and R. P. Hackel, “Analysis of output surface damage resulting from single 351nm, 3ns pulses on sub-nanosecond laser conditioned KD2PO4 crystals,” Proc. SPIE6720, 67200J, 67200J-12 (2007).
[CrossRef]

Jiang, W.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys.110(11), 113103 (2011).
[CrossRef] [PubMed]

Kozlowski, M. R.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001).
[CrossRef]

Kucheyev, S. O.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
[CrossRef]

Lamaignere, L.

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE6720, 672008, 672008-9 (2007).
[CrossRef]

Lamaignère, L.

F. Guillet, B. Bertussi, L. Lamaignère, and C. Maunier, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE7842, 78421T, 78421T-5 (2010).
[CrossRef]

S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation,” Opt. Express17(24), 21652–21665 (2009).
[CrossRef] [PubMed]

Leborgne, X.

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE6720, 672008, 672008-9 (2007).
[CrossRef]

Li, K. F.

Li, M. Q.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys.110(11), 113103 (2011).
[CrossRef] [PubMed]

Mailhiot, C.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006).
[CrossRef]

Maunier, C.

F. Guillet, B. Bertussi, L. Lamaignère, and C. Maunier, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE7842, 78421T, 78421T-5 (2010).
[CrossRef]

Minot, B.

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE6720, 672008, 672008-9 (2007).
[CrossRef]

Molander, W. A.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Monterrosa, A. M.

Natoli, J. Y.

Negres, R. A.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
[CrossRef]

R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005).
[CrossRef] [PubMed]

Nelson, A. J.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
[CrossRef]

Norton, M.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006).
[CrossRef]

Norton, M. A.

C. J. Stolz, J. Adams, M. D. Shirk, M. A. Norton, and T. L. Weiland, “Engineering meter-scale laser resistant coatings for the near IR,” Proc. SPIE5963, 59630Y, 59630Y-9 (2005).
[CrossRef]

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Nostrand, M. C.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Pistor, T. V.

Qiu, S. R.

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001).
[CrossRef]

Reyné, S.

Roy, R.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys.54(7), 601–607 (1986).
[CrossRef]

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Salleo, A.

Shirk, M. D.

C. J. Stolz, J. Adams, M. D. Shirk, M. A. Norton, and T. L. Weiland, “Engineering meter-scale laser resistant coatings for the near IR,” Proc. SPIE5963, 59630Y, 59630Y-9 (2005).
[CrossRef]

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Staggs, M.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001).
[CrossRef]

Stolz, C. J.

Strodtbeck, S. R.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Thompson, S. L.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

van Buuren, T.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
[CrossRef]

Wang, J.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys.110(11), 113103 (2011).
[CrossRef] [PubMed]

Wegner, P. J.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

Weiland, T. L.

C. J. Stolz, J. Adams, M. D. Shirk, M. A. Norton, and T. L. Weiland, “Engineering meter-scale laser resistant coatings for the near IR,” Proc. SPIE5963, 59630Y, 59630Y-9 (2005).
[CrossRef]

Whitman, P. K.

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

Wolfe, J. E.

Xu, Q.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys.110(11), 113103 (2011).
[CrossRef] [PubMed]

Yu, A. W.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys.54(7), 601–607 (1986).
[CrossRef]

Zhang, L.

Zhu, S.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys.54(7), 601–607 (1986).
[CrossRef]

Am. J. Phys.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys.54(7), 601–607 (1986).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. A. Negres, S. O. Kucheyev, P. DeMange, C. Bostedt, T. van Buuren, A. J. Nelson, and S. G. Demos, “Decomposition of KH2PO4 crystals during laser-induced breakdown,” Appl. Phys. Lett.86(17), 171107 (2005).
[CrossRef]

Int. Mater. Rev.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

J. Appl. Phys.

M. J. Chen, M. Q. Li, J. Cheng, W. Jiang, J. Wang, and Q. Xu, “Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning,” J. Appl. Phys.110(11), 113103 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.

C. J. Stolz, “The National Ignition Facility: The Path to a Carbon-Free Energy Future,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.370(1973), 4115–4129 (2012).
[CrossRef]

Phys. Rev. Lett.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Proc. SPIE

C. J. Stolz, J. Adams, M. D. Shirk, M. A. Norton, and T. L. Weiland, “Engineering meter-scale laser resistant coatings for the near IR,” Proc. SPIE5963, 59630Y, 59630Y-9 (2005).
[CrossRef]

L. W. Hrubesh, R. B. Brusasco, W. Grundler, M. A. Norton, E. E. Donohue, W. A. Molander, S. L. Thompson, S. R. Strodtbeck, P. K. Whitman, M. D. Shirk, P. J. Wegner, M. C. Nostrand, and A. K. Burnham, “Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351nm,” Proc. SPIE4932, 180–191 (2003).
[CrossRef]

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE6403, 64030Q, 64030Q-7 (2006).
[CrossRef]

F. Guillet, B. Bertussi, L. Lamaignère, and C. Maunier, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE7842, 78421T, 78421T-5 (2010).
[CrossRef]

F. Guillet, B. Bertussi, L. Lamaignere, X. Leborgne, and B. Minot, “Preliminary results on mitigation of KDP surface damage using the ball dimpling method,” Proc. SPIE6720, 672008, 672008-9 (2007).
[CrossRef]

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE4347, 277–284 (2001).
[CrossRef]

J. A. Jarboe, J. J. Adams, and R. P. Hackel, “Analysis of output surface damage resulting from single 351nm, 3ns pulses on sub-nanosecond laser conditioned KD2PO4 crystals,” Proc. SPIE6720, 67200J, 67200J-12 (2007).
[CrossRef]

Other

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Miniature five-axis milling set-up for fabrication of spherical mitigation pits on KDP/DKDP crystal surface. (a) Configuration of the machining set-up. (b) Double-edged micro-milling cutters with ball end. (c) Schematic of the machining process and the motion of various axes.

Fig. 2
Fig. 2

Microscopic image of a fabricated 240 μm wide and 30 μm deep mitigation pit. (a) 3D stereoscopic view and (b) sectional profile trace of the pit.

Fig. 3
Fig. 3

Schematic of the 3D FDTD model for spherical mitigation pit and its centric x-z cross section in the simulation domain.

Fig. 4
Fig. 4

Schematics of the 3D FDTD models for superficial cracks and their centric x-z cross sections in the simulation domain: (a) single crack and (b) adjacent cracks.

Fig. 5
Fig. 5

Distribution of light intensity caused by single cracks with various widths for TE-mode light irradiation. The lengths and depths of the cracks are all 1.0 μm, while the widths are deliberately specified to enable the incident angles at the cracks to be (a) β = 75°; (b) β = 50°; (c) β = 45° and (d) β = 15°.

Fig. 6
Fig. 6

Distribution of light intensity caused by single cracks with various widths for TM-mode light irradiation. The lengths and depths of the cracks are all 1.0 μm, while the widths are deliberately specified to enable the incident angles at the cracks to be (a) β = 75°; (b) β = 50°; (c) β = 45° and (d) β = 15°.

Fig. 7
Fig. 7

Distribution of light intensity caused by adjacent surface cracks with crack length l = 1.0 μm, width w = 2.0 μm, depth d = 1.0 μm and crack interval a = 1.0 μm (incident angle β = 45°): (a) TE mode; (b) TM mode.

Fig. 8
Fig. 8

Distribution of light intensity caused by spherical mitigation pit with pit width we = 10 μm and depth de = 1.2 μm: (a) TE mode; (b) TM mode.

Fig. 9
Fig. 9

2D histogram of LIEFs caused by spherical mitigation pits with various width-depth ratios for TE polarized light incidence. The depths of the pits gradually decrease while the widths keep stable at 4 μm, 8 μm and 10 μm, respectively. The color-box legend indicates the width-depth ratio of the mitigation pit.

Fig. 10
Fig. 10

2D histogram of LIEFs caused by spherical mitigation pits with various width-depth ratios for TM polarized light incidence. The depths of the pits gradually decrease while the widths keep stable at 4 μm, 8 μm and 10 μm, respectively. The color-box legend indicates the width-depth ratio of the mitigation pit.

Fig. 11
Fig. 11

Plot of LIEFs caused by spherical mitigation pits as a function of width-depth ratio for both TE and TM modes. The pit depth keeps constant at 0.5 μm and 1.0 μm. Since the largest pit width that we can accurately modeled is 10 μm, the maximum width-depth ratio for 1.0 μm depth pit is 10.

Fig. 12
Fig. 12

Comparison of measured LIDTs for KDP crystal with ideal surface, initially damaged surface and repaired surface with spherical mitigation pit.

Fig. 13
Fig. 13

The first row of images was obtained by confocal microscopy (C) and the second by stereoscopic microscope with super depth of field (S). The first column (DS) is the evolution of initially damaged surface before and after laser exposure with 2 shots at 2.40 J/cm2, and the second (RS) shows the repaired surface with spherical mitigation pit before and after laser exposure with 50 shots at 3.43 J/cm2.

Tables (2)

Tables Icon

Table 1 Summary of the LIEFs for various irradiation conditions and surface cracks before mitigation with the occurrence of double total internal reflections (βi is larger than 45° and smaller than 68.9°)

Tables Icon

Table 2 The experimental parameters for laser damage test on KDP crystal

Metrics