Abstract

We report on the surprisingly strong, broadband emission of coherent terahertz pulses from ultrathin layers of semiconductors such as amorphous silicon, germanium and polycrystalline cuprous oxide deposited on gold, upon illumination with femtosecond laser pulses. The strength of the emission is surprising because the materials are considered to be bad (amorphous silicon and polycrystalline cuprous oxide) or fair (amorphous germanium) terahertz emitters at best. We show that the strength of the emission is partly explained by cavity-enhanced optical absorption. This forces most of the light to be absorbed in the depletion region of the semiconductor/metal interface where terahertz generation occurs. For an excitation wavelength of 800 nm, the strongest terahertz emission is found for a 25 nm thick layer of amorphous germanium, a 40 nm thick layer of amorphous silicon and a 420 nm thick layer of cuprous oxide, all on gold. The emission from cuprous oxide is similar in strength to that obtained with optical rectification from a 300 μm thick gallium phosphide crystal. As an application of our findings we demonstrate how such thin films can be used to turn standard optical components, such as paraboloidal mirrors, into self-focusing terahertz emitters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sakai, ed., Terahertz Optoelectronics (Springer-Verlag, Berlin Hiedelberg, 2005).
    [CrossRef]
  2. A. J. L. Adam, “Review of Near-Field Terahertz Measurement Methods and Their Applications,” J. Infrared Milli. Terahz. Waves32, 976–1019 (2011).
    [CrossRef]
  3. K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
    [CrossRef]
  4. X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
    [CrossRef]
  5. X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys.71, 326–338 (1992).
    [CrossRef]
  6. Y. Jin, X. F. Ma, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Anomalous optically generated THz beams from metal/GaAs interfaces,” Appl. Phys. Lett.65, 682–684 (1994).
    [CrossRef]
  7. P. Mounaix, A. Younus, J. C. Delagnes, E. Abraham, L. Canioni, and M. Fabre, “Spectroscopy and terahertz imaging for sigillography applications,” J. Europ. Opt. Soc. Rap. Public.6, 11002 (2011).
    [CrossRef]
  8. H. Dember, “Photoelectromotive force in cuprous oxide crystals,” Phys. Z.32, 554–556 (1931).
  9. S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B71, 901–904 (2000).
    [CrossRef]
  10. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
    [CrossRef]
  11. A. Urbanowicz, R. Adomavičius, and A. Krotkus, “Terahertz emission from photoexcited surfaces of Ge crystals,” Physica B367, 152–157 (2005).
    [CrossRef]
  12. A. Urbanowicz, R. Adomavičius, A. Krotkus, and V. L. Malevich, “Electron dynamics in Ge crystals studied by terahertz emission from photoexcited surfaces,” Semicond. Sci. Technol.20, 1010–1015 (2005).
    [CrossRef]
  13. P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett.93, 091106 (2008).
    [CrossRef]
  14. N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26, 075015 (2011).
    [CrossRef]
  15. M. Li, F. G. Sun, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Measurement and analysis of terahertz radiation from bulk semiconductors,” Appl. Phys. Lett.67, 25–27 (1995).
    [CrossRef]
  16. X. Mu, Y. J. Ding, K. Wang, D. Jena, and Y. B. Zotova, “Resonant terahertz generation from InN thin films,” Opt. Lett.32, 1423–1425 (2007).
    [CrossRef] [PubMed]
  17. C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz emission enhancement in InAs thin films using a silicon lens coupler,” Jpn. J. Appl. Phys.50, 080207 (2011).
    [CrossRef]
  18. E. S. Estacio, C. T. Que, F. C. B. Awitan, J. I. Bugante, F. I. de Vera, J. Azares, J. Afalla, J. de Vero, A. S. Somintac, R. V. Sarmago, A. A. Salvador, K. Yamamoto, and M. Tani, “Terahertz emission from indium oxide films grown on MgO substrates using sub-bandgap photon energy excitation,” Opt. Express20, 4518–4524 (2012).
    [CrossRef] [PubMed]
  19. G. Ramakrishnan, “Enhanced terahertz emission from thin film semiconductor/metal interfaces,” Ph.D. thesis, Delft University of Technology, The Netherlands (2012).
  20. G. Ramakrishnan, R. Chakkittakandy, and P. C. M. Planken, “Terahertz generation from graphite,” Opt. Express17, 16092–16099 (2009).
    [CrossRef] [PubMed]
  21. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B18, 313–317 (2001).
    [CrossRef]
  22. G. K. P. Ramanandan, G. Ramakrishnan, and P. C. M. Planken, “Oxidation kinetics of nanoscale copper films studied by terahertz transmission spectroscopy,” J. Appl. Phys.111, 123517 (2012).
    [CrossRef]
  23. R. Chakkittakandy, J. A. Corver, and P. C. M. Planken, “Quasi-near field terahertz generation and detection,” Opt. Express16, 12794–12805 (2008).
    [CrossRef] [PubMed]
  24. N. C. J. van der Valk, P. C. M. Planken, A. N. Buijserd, and H. J. Bakker, “Influence of pump wavelength and crystal length on the phase matching of optical rectification,” J. Opt. Soc. Am. B22, 1714–1718 (2005).
    [CrossRef]
  25. R. Chakkittakandy, “Quasi-near field terahertz spectroscopy,” Ph.D. thesis, Delft University of Technology, The Netherlands (2010).
  26. Y.-P. Yang, W.-Z. Wang, Z.-W. Zhang, L.-L. Zhang, and C.-L. Zhang, “Dielectric and lattice vibrational spectra of Cu2O hollow spheres in the range of 1–10 THz,” J. Phys. Chem. C115, 10333–10337 (2011).
    [CrossRef]
  27. R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl, “Stimulated terahertz emission from intraexcitonic transitions in Cu2O,” Phys. Rev. Lett.96, 017402 (2006).
    [CrossRef] [PubMed]
  28. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mat.12, 20–24 (2013).
    [CrossRef]
  29. E. Hecht, Optics, 4th ed. (Pearson Education, Inc., San Francisco, 2002).
  30. S. Yoshida, “Antireflection coatings on metals for selective solar absorbers,” Thin Solid Films, 56, 321–329 (1979).
    [CrossRef]
  31. W. Wan, Y. Chong, Li Ge, H. Noh, A. D. Stone, and Hui Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011).
    [CrossRef] [PubMed]
  32. Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105, 053901 (2010).
    [CrossRef] [PubMed]
  33. K. Kishino, M. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoç, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27, 2025–2034 (1991).
    [CrossRef]
  34. S. Kasap and P. Capper, ed. Springer Handbook of Electronic and Photonic Materials(Springer Science+Business Media Inc.New York, 2006).
  35. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18, 4939–4947 (2010).
    [CrossRef] [PubMed]
  36. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31, 292–294 (1977).
    [CrossRef]
  37. A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron.29, 7–17(1986).
    [CrossRef]
  38. A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering,” Phys. Status Solidi A155, 399–404 (1996).
    [CrossRef]
  39. M. O’Keeffe and W. J. Moore, “Electrical conductivity of monocrystalline cuprous oxide,” J. Chem. Phys.35, 1324–1328 (1961).
    [CrossRef]
  40. F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A207, 1647–1651 (2010).
    [CrossRef]
  41. W. H. Brattain, “The copper oxide rectifier,” Rev. Mod. Phys.23, 203–212 (1951).
    [CrossRef]
  42. V. V. Afanas’ev, Internal Photoemission Spectroscopy: Principles and Applications (Elsevier, 2008).
  43. J. A. Assimos and D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys.44, 1687–1693 (1973).
    [CrossRef]
  44. Y. Shi, Y. Yang, X. Xu, S. Ma, W. Yan, and L. Wang, “Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy,” Appl. Phys. Lett.88, 161109 (2006).
    [CrossRef]
  45. S. E. Mani, J. I. Jang, and J. B. Ketterson, “Large third-order susceptibility and third-harmonic generation in centrosymmetric Cu2O crystal,” Opt. Lett.34, 2817–2819 (2009).
    [CrossRef] [PubMed]
  46. E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett.63, 976–979 (1989).
    [CrossRef] [PubMed]
  47. X. Mathew, N. R. Mathews, and P. J. Sebastian, “Temperature dependence of the optical transitions in electrode-posited Cu2O thin films,” Sol. Energ. Mat. Sol. C.70, 277–286 (2001).
    [CrossRef]
  48. M. E. Toimil Molares, “Fabrication and characterisation of copper nanowires electrochemically deposited in etched ion-track membranes,” Ph.D. thesis, Ruperto-Carola University of Heidelberg, Germany (2001).
  49. H. Mori, M. Komatsu, K. Takeda, and H. Fujita, “Spontaneous alloying of copper into gold atom clusters,” Phil. Mag. Lett.63, 173–178 (1991).
    [CrossRef]
  50. S. P. Pucic, “Diffusion of copper into gold plating,” in Instrumentation and Measurement Technology Conference, 1993. IMTC/93. Conference Record, IEEE, 114–117 (1993).
  51. G. K. P. Ramanandan, A. J. L. Adam, G. Ramakrishnan, R. Hendrikx, and P. C. M. Planken, “Optical characterization of gold-cuprous oxide interface for terahertz emission applications,” in preparation (2013).
  52. B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.56, 886–888 (1990).
    [CrossRef]
  53. R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology19, 455604 (2008).
    [CrossRef] [PubMed]
  54. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10, 2012–2018 (2010).
    [CrossRef] [PubMed]

2013

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mat.12, 20–24 (2013).
[CrossRef]

G. K. P. Ramanandan, A. J. L. Adam, G. Ramakrishnan, R. Hendrikx, and P. C. M. Planken, “Optical characterization of gold-cuprous oxide interface for terahertz emission applications,” in preparation (2013).

2012

2011

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26, 075015 (2011).
[CrossRef]

A. J. L. Adam, “Review of Near-Field Terahertz Measurement Methods and Their Applications,” J. Infrared Milli. Terahz. Waves32, 976–1019 (2011).
[CrossRef]

P. Mounaix, A. Younus, J. C. Delagnes, E. Abraham, L. Canioni, and M. Fabre, “Spectroscopy and terahertz imaging for sigillography applications,” J. Europ. Opt. Soc. Rap. Public.6, 11002 (2011).
[CrossRef]

Y.-P. Yang, W.-Z. Wang, Z.-W. Zhang, L.-L. Zhang, and C.-L. Zhang, “Dielectric and lattice vibrational spectra of Cu2O hollow spheres in the range of 1–10 THz,” J. Phys. Chem. C115, 10333–10337 (2011).
[CrossRef]

W. Wan, Y. Chong, Li Ge, H. Noh, A. D. Stone, and Hui Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011).
[CrossRef] [PubMed]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz emission enhancement in InAs thin films using a silicon lens coupler,” Jpn. J. Appl. Phys.50, 080207 (2011).
[CrossRef]

2010

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18, 4939–4947 (2010).
[CrossRef] [PubMed]

F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A207, 1647–1651 (2010).
[CrossRef]

Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105, 053901 (2010).
[CrossRef] [PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10, 2012–2018 (2010).
[CrossRef] [PubMed]

2009

2008

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett.93, 091106 (2008).
[CrossRef]

R. Chakkittakandy, J. A. Corver, and P. C. M. Planken, “Quasi-near field terahertz generation and detection,” Opt. Express16, 12794–12805 (2008).
[CrossRef] [PubMed]

R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology19, 455604 (2008).
[CrossRef] [PubMed]

2007

2006

R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl, “Stimulated terahertz emission from intraexcitonic transitions in Cu2O,” Phys. Rev. Lett.96, 017402 (2006).
[CrossRef] [PubMed]

Y. Shi, Y. Yang, X. Xu, S. Ma, W. Yan, and L. Wang, “Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy,” Appl. Phys. Lett.88, 161109 (2006).
[CrossRef]

2005

N. C. J. van der Valk, P. C. M. Planken, A. N. Buijserd, and H. J. Bakker, “Influence of pump wavelength and crystal length on the phase matching of optical rectification,” J. Opt. Soc. Am. B22, 1714–1718 (2005).
[CrossRef]

A. Urbanowicz, R. Adomavičius, and A. Krotkus, “Terahertz emission from photoexcited surfaces of Ge crystals,” Physica B367, 152–157 (2005).
[CrossRef]

A. Urbanowicz, R. Adomavičius, A. Krotkus, and V. L. Malevich, “Electron dynamics in Ge crystals studied by terahertz emission from photoexcited surfaces,” Semicond. Sci. Technol.20, 1010–1015 (2005).
[CrossRef]

2002

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

2001

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B18, 313–317 (2001).
[CrossRef]

X. Mathew, N. R. Mathews, and P. J. Sebastian, “Temperature dependence of the optical transitions in electrode-posited Cu2O thin films,” Sol. Energ. Mat. Sol. C.70, 277–286 (2001).
[CrossRef]

2000

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B71, 901–904 (2000).
[CrossRef]

1996

A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering,” Phys. Status Solidi A155, 399–404 (1996).
[CrossRef]

1995

M. Li, F. G. Sun, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Measurement and analysis of terahertz radiation from bulk semiconductors,” Appl. Phys. Lett.67, 25–27 (1995).
[CrossRef]

1994

Y. Jin, X. F. Ma, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Anomalous optically generated THz beams from metal/GaAs interfaces,” Appl. Phys. Lett.65, 682–684 (1994).
[CrossRef]

1992

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys.71, 326–338 (1992).
[CrossRef]

1991

K. Kishino, M. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoç, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27, 2025–2034 (1991).
[CrossRef]

H. Mori, M. Komatsu, K. Takeda, and H. Fujita, “Spontaneous alloying of copper into gold atom clusters,” Phil. Mag. Lett.63, 173–178 (1991).
[CrossRef]

1990

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.56, 886–888 (1990).
[CrossRef]

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
[CrossRef]

1989

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett.63, 976–979 (1989).
[CrossRef] [PubMed]

1986

A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron.29, 7–17(1986).
[CrossRef]

1979

S. Yoshida, “Antireflection coatings on metals for selective solar absorbers,” Thin Solid Films, 56, 321–329 (1979).
[CrossRef]

1977

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31, 292–294 (1977).
[CrossRef]

1973

J. A. Assimos and D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys.44, 1687–1693 (1973).
[CrossRef]

1961

M. O’Keeffe and W. J. Moore, “Electrical conductivity of monocrystalline cuprous oxide,” J. Chem. Phys.35, 1324–1328 (1961).
[CrossRef]

1951

W. H. Brattain, “The copper oxide rectifier,” Rev. Mod. Phys.23, 203–212 (1951).
[CrossRef]

1931

H. Dember, “Photoelectromotive force in cuprous oxide crystals,” Phys. Z.32, 554–556 (1931).

Abraham, E.

P. Mounaix, A. Younus, J. C. Delagnes, E. Abraham, L. Canioni, and M. Fabre, “Spectroscopy and terahertz imaging for sigillography applications,” J. Europ. Opt. Soc. Rap. Public.6, 11002 (2011).
[CrossRef]

Adam, A. J. L.

G. K. P. Ramanandan, A. J. L. Adam, G. Ramakrishnan, R. Hendrikx, and P. C. M. Planken, “Optical characterization of gold-cuprous oxide interface for terahertz emission applications,” in preparation (2013).

A. J. L. Adam, “Review of Near-Field Terahertz Measurement Methods and Their Applications,” J. Infrared Milli. Terahz. Waves32, 976–1019 (2011).
[CrossRef]

Adomavicius, R.

A. Urbanowicz, R. Adomavičius, and A. Krotkus, “Terahertz emission from photoexcited surfaces of Ge crystals,” Physica B367, 152–157 (2005).
[CrossRef]

A. Urbanowicz, R. Adomavičius, A. Krotkus, and V. L. Malevich, “Electron dynamics in Ge crystals studied by terahertz emission from photoexcited surfaces,” Semicond. Sci. Technol.20, 1010–1015 (2005).
[CrossRef]

Afalla, J.

Afanas’ev, V. V.

V. V. Afanas’ev, Internal Photoemission Spectroscopy: Principles and Applications (Elsevier, 2008).

Agati, A.

A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering,” Phys. Status Solidi A155, 399–404 (1996).
[CrossRef]

Akkari, F. C.

F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A207, 1647–1651 (2010).
[CrossRef]

Alexander, M.

M. Li, F. G. Sun, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Measurement and analysis of terahertz radiation from bulk semiconductors,” Appl. Phys. Lett.67, 25–27 (1995).
[CrossRef]

Y. Jin, X. F. Ma, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Anomalous optically generated THz beams from metal/GaAs interfaces,” Appl. Phys. Lett.65, 682–684 (1994).
[CrossRef]

Arsenault, L.

K. Kishino, M. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoç, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27, 2025–2034 (1991).
[CrossRef]

Aspnes, D. E.

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett.63, 976–979 (1989).
[CrossRef] [PubMed]

Assimos, J. A.

J. A. Assimos and D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys.44, 1687–1693 (1973).
[CrossRef]

Auston, D. H.

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys.71, 326–338 (1992).
[CrossRef]

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.56, 886–888 (1990).
[CrossRef]

Awitan, F. C. B.

Azares, J.

Bakker, H. J.

Bartels, A.

Bastian, G.

Beck, M.

Beigang, R.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett.93, 091106 (2008).
[CrossRef]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mat.12, 20–24 (2013).
[CrossRef]

Brattain, W. H.

W. H. Brattain, “The copper oxide rectifier,” Rev. Mod. Phys.23, 203–212 (1951).
[CrossRef]

Bugante, J. I.

Buijserd, A. N.

Canioni, L.

P. Mounaix, A. Younus, J. C. Delagnes, E. Abraham, L. Canioni, and M. Fabre, “Spectroscopy and terahertz imaging for sigillography applications,” J. Europ. Opt. Soc. Rap. Public.6, 11002 (2011).
[CrossRef]

Cao, Hui

W. Wan, Y. Chong, Li Ge, H. Noh, A. D. Stone, and Hui Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011).
[CrossRef] [PubMed]

Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105, 053901 (2010).
[CrossRef] [PubMed]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mat.12, 20–24 (2013).
[CrossRef]

Cataluna, M. A.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26, 075015 (2011).
[CrossRef]

Chakkittakandy, R.

Chemla, D. S.

R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl, “Stimulated terahertz emission from intraexcitonic transitions in Cu2O,” Phys. Rev. Lett.96, 017402 (2006).
[CrossRef] [PubMed]

Chen, R.

R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology19, 455604 (2008).
[CrossRef] [PubMed]

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10, 2012–2018 (2010).
[CrossRef] [PubMed]

Chong, Y.

W. Wan, Y. Chong, Li Ge, H. Noh, A. D. Stone, and Hui Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011).
[CrossRef] [PubMed]

Chong, Y. D.

Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105, 053901 (2010).
[CrossRef] [PubMed]

Chyi, J.-I.

K. Kishino, M. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoç, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27, 2025–2034 (1991).
[CrossRef]

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

Corver, J. A.

Daghestani, N. S.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26, 075015 (2011).
[CrossRef]

Darrow, J. T.

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.56, 886–888 (1990).
[CrossRef]

Davies, A. G.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

de Vera, F. I.

de Vero, J.

Dekorsy, T.

Delagnes, J. C.

P. Mounaix, A. Younus, J. C. Delagnes, E. Abraham, L. Canioni, and M. Fabre, “Spectroscopy and terahertz imaging for sigillography applications,” J. Europ. Opt. Soc. Rap. Public.6, 11002 (2011).
[CrossRef]

Dember, H.

H. Dember, “Photoelectromotive force in cuprous oxide crystals,” Phys. Z.32, 554–556 (1931).

Di Nocera, A.

A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering,” Phys. Status Solidi A155, 399–404 (1996).
[CrossRef]

Ding, Y. J.

Edamura, T.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz emission enhancement in InAs thin films using a silicon lens coupler,” Jpn. J. Appl. Phys.50, 080207 (2011).
[CrossRef]

Estacio, E. S.

Ezdi, K.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
[CrossRef]

Fabre, M.

P. Mounaix, A. Younus, J. C. Delagnes, E. Abraham, L. Canioni, and M. Fabre, “Spectroscopy and terahertz imaging for sigillography applications,” J. Europ. Opt. Soc. Rap. Public.6, 11002 (2011).
[CrossRef]

Faist, J.

Fischer, M.

Fujita, H.

H. Mori, M. Komatsu, K. Takeda, and H. Fujita, “Spontaneous alloying of copper into gold atom clusters,” Phil. Mag. Lett.63, 173–178 (1991).
[CrossRef]

Ge, Li

W. Wan, Y. Chong, Li Ge, H. Noh, A. D. Stone, and Hui Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011).
[CrossRef] [PubMed]

Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105, 053901 (2010).
[CrossRef] [PubMed]

Gebs, R.

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mat.12, 20–24 (2013).
[CrossRef]

Gu, P.

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B71, 901–904 (2000).
[CrossRef]

Hangyo, M.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz emission enhancement in InAs thin films using a silicon lens coupler,” Jpn. J. Appl. Phys.50, 080207 (2011).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Pearson Education, Inc., San Francisco, 2002).

Heinen, B.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
[CrossRef]

Hendrikx, R.

G. K. P. Ramanandan, A. J. L. Adam, G. Ramakrishnan, R. Hendrikx, and P. C. M. Planken, “Optical characterization of gold-cuprous oxide interface for terahertz emission applications,” in preparation (2013).

Heritage, J. P.

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett.63, 976–979 (1989).
[CrossRef] [PubMed]

Hilser, F.

Hoyer, P.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett.93, 091106 (2008).
[CrossRef]

Hu, B. B.

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.56, 886–888 (1990).
[CrossRef]

Huber, R.

R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl, “Stimulated terahertz emission from intraexcitonic transitions in Cu2O,” Phys. Rev. Lett.96, 017402 (2006).
[CrossRef] [PubMed]

Huska, K.

Jang, J. I.

Jayaraj, M. K.

A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering,” Phys. Status Solidi A155, 399–404 (1996).
[CrossRef]

Jena, D.

Jin, Y.

Y. Jin, X. F. Ma, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Anomalous optically generated THz beams from metal/GaAs interfaces,” Appl. Phys. Lett.65, 682–684 (1994).
[CrossRef]

Johnston, M. B.

Jördens, C.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
[CrossRef]

Kaindl, R. A.

R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl, “Stimulated terahertz emission from intraexcitonic transitions in Cu2O,” Phys. Rev. Lett.96, 017402 (2006).
[CrossRef] [PubMed]

Kanzari, M.

F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A207, 1647–1651 (2010).
[CrossRef]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mat.12, 20–24 (2013).
[CrossRef]

Ketterson, J. B.

Kishino, K.

K. Kishino, M. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoç, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27, 2025–2034 (1991).
[CrossRef]

Klatt, G.

Kley, E.-B.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett.93, 091106 (2008).
[CrossRef]

Koch, M.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
[CrossRef]

Komatsu, M.

H. Mori, M. Komatsu, K. Takeda, and H. Fujita, “Spontaneous alloying of copper into gold atom clusters,” Phil. Mag. Lett.63, 173–178 (1991).
[CrossRef]

Kono, S.

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B71, 901–904 (2000).
[CrossRef]

Krotkus, A.

A. Urbanowicz, R. Adomavičius, A. Krotkus, and V. L. Malevich, “Electron dynamics in Ge crystals studied by terahertz emission from photoexcited surfaces,” Semicond. Sci. Technol.20, 1010–1015 (2005).
[CrossRef]

A. Urbanowicz, R. Adomavičius, and A. Krotkus, “Terahertz emission from photoexcited surfaces of Ge crystals,” Physica B367, 152–157 (2005).
[CrossRef]

Krumbholz, N.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
[CrossRef]

Lemmer, U.

Li, M.

M. Li, F. G. Sun, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Measurement and analysis of terahertz radiation from bulk semiconductors,” Appl. Phys. Lett.67, 25–27 (1995).
[CrossRef]

Linfield, E. H.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

Loreti, S.

A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering,” Phys. Status Solidi A155, 399–404 (1996).
[CrossRef]

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10, 2012–2018 (2010).
[CrossRef] [PubMed]

Ma, S.

Y. Shi, Y. Yang, X. Xu, S. Ma, W. Yan, and L. Wang, “Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy,” Appl. Phys. Lett.88, 161109 (2006).
[CrossRef]

Ma, X. F.

Y. Jin, X. F. Ma, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Anomalous optically generated THz beams from metal/GaAs interfaces,” Appl. Phys. Lett.65, 682–684 (1994).
[CrossRef]

Malevich, V. L.

A. Urbanowicz, R. Adomavičius, A. Krotkus, and V. L. Malevich, “Electron dynamics in Ge crystals studied by terahertz emission from photoexcited surfaces,” Semicond. Sci. Technol.20, 1010–1015 (2005).
[CrossRef]

Mani, S. E.

Mathew, X.

X. Mathew, N. R. Mathews, and P. J. Sebastian, “Temperature dependence of the optical transitions in electrode-posited Cu2O thin films,” Sol. Energ. Mat. Sol. C.70, 277–286 (2001).
[CrossRef]

Mathews, N. R.

X. Mathew, N. R. Mathews, and P. J. Sebastian, “Temperature dependence of the optical transitions in electrode-posited Cu2O thin films,” Sol. Energ. Mat. Sol. C.70, 277–286 (2001).
[CrossRef]

Mikulics, M.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
[CrossRef]

Moore, W. J.

M. O’Keeffe and W. J. Moore, “Electrical conductivity of monocrystalline cuprous oxide,” J. Chem. Phys.35, 1324–1328 (1961).
[CrossRef]

Mori, H.

H. Mori, M. Komatsu, K. Takeda, and H. Fujita, “Spontaneous alloying of copper into gold atom clusters,” Phil. Mag. Lett.63, 173–178 (1991).
[CrossRef]

Morkoç, H.

K. Kishino, M. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoç, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27, 2025–2034 (1991).
[CrossRef]

Morris, H. R.

R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology19, 455604 (2008).
[CrossRef] [PubMed]

Mounaix, P.

P. Mounaix, A. Younus, J. C. Delagnes, E. Abraham, L. Canioni, and M. Fabre, “Spectroscopy and terahertz imaging for sigillography applications,” J. Europ. Opt. Soc. Rap. Public.6, 11002 (2011).
[CrossRef]

Moussa, L.

R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology19, 455604 (2008).
[CrossRef] [PubMed]

Mu, X.

Nakajima, M.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz emission enhancement in InAs thin films using a silicon lens coupler,” Jpn. J. Appl. Phys.50, 080207 (2011).
[CrossRef]

Nienhuys, H.-K.

Noh, H.

W. Wan, Y. Chong, Li Ge, H. Noh, A. D. Stone, and Hui Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011).
[CrossRef] [PubMed]

Nuhfer, N. T.

R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology19, 455604 (2008).
[CrossRef] [PubMed]

O’Keeffe, M.

M. O’Keeffe and W. J. Moore, “Electrical conductivity of monocrystalline cuprous oxide,” J. Chem. Phys.35, 1324–1328 (1961).
[CrossRef]

Parretta, A.

A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering,” Phys. Status Solidi A155, 399–404 (1996).
[CrossRef]

Persheyev, S.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26, 075015 (2011).
[CrossRef]

Planken, P. C. M.

Pucic, S. P.

S. P. Pucic, “Diffusion of copper into gold plating,” in Instrumentation and Measurement Technology Conference, 1993. IMTC/93. Conference Record, IEEE, 114–117 (1993).

Qiao, W.

Que, C. T.

Quercia, L.

A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering,” Phys. Status Solidi A155, 399–404 (1996).
[CrossRef]

Rakhshani, A. E.

A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron.29, 7–17(1986).
[CrossRef]

Ramakrishnan, G.

G. K. P. Ramanandan, A. J. L. Adam, G. Ramakrishnan, R. Hendrikx, and P. C. M. Planken, “Optical characterization of gold-cuprous oxide interface for terahertz emission applications,” in preparation (2013).

G. K. P. Ramanandan, G. Ramakrishnan, and P. C. M. Planken, “Oxidation kinetics of nanoscale copper films studied by terahertz transmission spectroscopy,” J. Appl. Phys.111, 123517 (2012).
[CrossRef]

G. Ramakrishnan, R. Chakkittakandy, and P. C. M. Planken, “Terahertz generation from graphite,” Opt. Express17, 16092–16099 (2009).
[CrossRef] [PubMed]

G. Ramakrishnan, “Enhanced terahertz emission from thin film semiconductor/metal interfaces,” Ph.D. thesis, Delft University of Technology, The Netherlands (2012).

Ramanandan, G. K. P.

G. K. P. Ramanandan, A. J. L. Adam, G. Ramakrishnan, R. Hendrikx, and P. C. M. Planken, “Optical characterization of gold-cuprous oxide interface for terahertz emission applications,” in preparation (2013).

G. K. P. Ramanandan, G. Ramakrishnan, and P. C. M. Planken, “Oxidation kinetics of nanoscale copper films studied by terahertz transmission spectroscopy,” J. Appl. Phys.111, 123517 (2012).
[CrossRef]

Reed, J.

K. Kishino, M. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoç, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27, 2025–2034 (1991).
[CrossRef]

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10, 2012–2018 (2010).
[CrossRef] [PubMed]

Rose, M. J.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26, 075015 (2011).
[CrossRef]

Ross, G.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26, 075015 (2011).
[CrossRef]

Sakai, K.

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B71, 901–904 (2000).
[CrossRef]

Salvador, A. A.

Sarmago, R. V.

Schmid, B. A.

R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl, “Stimulated terahertz emission from intraexcitonic transitions in Cu2O,” Phys. Rev. Lett.96, 017402 (2006).
[CrossRef] [PubMed]

Schmidt, M. T.

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
[CrossRef]

Sebastian, P. J.

X. Mathew, N. R. Mathews, and P. J. Sebastian, “Temperature dependence of the optical transitions in electrode-posited Cu2O thin films,” Sol. Energ. Mat. Sol. C.70, 277–286 (2001).
[CrossRef]

Shen, Y. R.

R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl, “Stimulated terahertz emission from intraexcitonic transitions in Cu2O,” Phys. Rev. Lett.96, 017402 (2006).
[CrossRef] [PubMed]

Shi, Y.

Y. Shi, Y. Yang, X. Xu, S. Ma, W. Yan, and L. Wang, “Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy,” Appl. Phys. Lett.88, 161109 (2006).
[CrossRef]

Smith, P. R.

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.56, 886–888 (1990).
[CrossRef]

Somintac, A. S.

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31, 292–294 (1977).
[CrossRef]

Stone, A. D.

W. Wan, Y. Chong, Li Ge, H. Noh, A. D. Stone, and Hui Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011).
[CrossRef] [PubMed]

Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105, 053901 (2010).
[CrossRef] [PubMed]

Sun, F. G.

M. Li, F. G. Sun, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Measurement and analysis of terahertz radiation from bulk semiconductors,” Appl. Phys. Lett.67, 25–27 (1995).
[CrossRef]

Takeda, K.

H. Mori, M. Komatsu, K. Takeda, and H. Fujita, “Spontaneous alloying of copper into gold atom clusters,” Phil. Mag. Lett.63, 173–178 (1991).
[CrossRef]

Tani, M.

E. S. Estacio, C. T. Que, F. C. B. Awitan, J. I. Bugante, F. I. de Vera, J. Azares, J. Afalla, J. de Vero, A. S. Somintac, R. V. Sarmago, A. A. Salvador, K. Yamamoto, and M. Tani, “Terahertz emission from indium oxide films grown on MgO substrates using sub-bandgap photon energy excitation,” Opt. Express20, 4518–4524 (2012).
[CrossRef] [PubMed]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz emission enhancement in InAs thin films using a silicon lens coupler,” Jpn. J. Appl. Phys.50, 080207 (2011).
[CrossRef]

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B71, 901–904 (2000).
[CrossRef]

Tham, P.

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
[CrossRef]

Theuer, M.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett.93, 091106 (2008).
[CrossRef]

Toimil Molares, M. E.

M. E. Toimil Molares, “Fabrication and characterisation of copper nanowires electrochemically deposited in etched ion-track membranes,” Ph.D. thesis, Ruperto-Carola University of Heidelberg, Germany (2001).

Trivich, D.

J. A. Assimos and D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys.44, 1687–1693 (1973).
[CrossRef]

Ünlü, M.

K. Kishino, M. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoç, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27, 2025–2034 (1991).
[CrossRef]

Urbanowicz, A.

A. Urbanowicz, R. Adomavičius, A. Krotkus, and V. L. Malevich, “Electron dynamics in Ge crystals studied by terahertz emission from photoexcited surfaces,” Semicond. Sci. Technol.20, 1010–1015 (2005).
[CrossRef]

A. Urbanowicz, R. Adomavičius, and A. Krotkus, “Terahertz emission from photoexcited surfaces of Ge crystals,” Physica B367, 152–157 (2005).
[CrossRef]

van der Valk, N. C. J.

Vieweg, N.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
[CrossRef]

Wagoner, G. A.

M. Li, F. G. Sun, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Measurement and analysis of terahertz radiation from bulk semiconductors,” Appl. Phys. Lett.67, 25–27 (1995).
[CrossRef]

Y. Jin, X. F. Ma, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Anomalous optically generated THz beams from metal/GaAs interfaces,” Appl. Phys. Lett.65, 682–684 (1994).
[CrossRef]

Wan, W.

W. Wan, Y. Chong, Li Ge, H. Noh, A. D. Stone, and Hui Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011).
[CrossRef] [PubMed]

Wang, K.

Wang, L.

Y. Shi, Y. Yang, X. Xu, S. Ma, W. Yan, and L. Wang, “Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy,” Appl. Phys. Lett.88, 161109 (2006).
[CrossRef]

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10, 2012–2018 (2010).
[CrossRef] [PubMed]

Wang, W.-Z.

Y.-P. Yang, W.-Z. Wang, Z.-W. Zhang, L.-L. Zhang, and C.-L. Zhang, “Dielectric and lattice vibrational spectra of Cu2O hollow spheres in the range of 1–10 THz,” J. Phys. Chem. C115, 10333–10337 (2011).
[CrossRef]

Wenckebach, T.

Whitmore, P. M.

R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology19, 455604 (2008).
[CrossRef] [PubMed]

Whittaker, D. M.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

Wilk, R.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31, 292–294 (1977).
[CrossRef]

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10, 2012–2018 (2010).
[CrossRef] [PubMed]

Xu, X.

Y. Shi, Y. Yang, X. Xu, S. Ma, W. Yan, and L. Wang, “Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy,” Appl. Phys. Lett.88, 161109 (2006).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett.63, 976–979 (1989).
[CrossRef] [PubMed]

Yafet, Y.

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett.63, 976–979 (1989).
[CrossRef] [PubMed]

Yamamoto, K.

Yan, W.

Y. Shi, Y. Yang, X. Xu, S. Ma, W. Yan, and L. Wang, “Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy,” Appl. Phys. Lett.88, 161109 (2006).
[CrossRef]

Yang, E. S.

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
[CrossRef]

Yang, Y.

Y. Shi, Y. Yang, X. Xu, S. Ma, W. Yan, and L. Wang, “Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy,” Appl. Phys. Lett.88, 161109 (2006).
[CrossRef]

Yang, Y.-P.

Y.-P. Yang, W.-Z. Wang, Z.-W. Zhang, L.-L. Zhang, and C.-L. Zhang, “Dielectric and lattice vibrational spectra of Cu2O hollow spheres in the range of 1–10 THz,” J. Phys. Chem. C115, 10333–10337 (2011).
[CrossRef]

Yoshida, S.

S. Yoshida, “Antireflection coatings on metals for selective solar absorbers,” Thin Solid Films, 56, 321–329 (1979).
[CrossRef]

Younus, A.

P. Mounaix, A. Younus, J. C. Delagnes, E. Abraham, L. Canioni, and M. Fabre, “Spectroscopy and terahertz imaging for sigillography applications,” J. Europ. Opt. Soc. Rap. Public.6, 11002 (2011).
[CrossRef]

Zhang, C.-L.

Y.-P. Yang, W.-Z. Wang, Z.-W. Zhang, L.-L. Zhang, and C.-L. Zhang, “Dielectric and lattice vibrational spectra of Cu2O hollow spheres in the range of 1–10 THz,” J. Phys. Chem. C115, 10333–10337 (2011).
[CrossRef]

Zhang, L.-L.

Y.-P. Yang, W.-Z. Wang, Z.-W. Zhang, L.-L. Zhang, and C.-L. Zhang, “Dielectric and lattice vibrational spectra of Cu2O hollow spheres in the range of 1–10 THz,” J. Phys. Chem. C115, 10333–10337 (2011).
[CrossRef]

Zhang, X.-C.

M. Li, F. G. Sun, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Measurement and analysis of terahertz radiation from bulk semiconductors,” Appl. Phys. Lett.67, 25–27 (1995).
[CrossRef]

Y. Jin, X. F. Ma, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Anomalous optically generated THz beams from metal/GaAs interfaces,” Appl. Phys. Lett.65, 682–684 (1994).
[CrossRef]

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys.71, 326–338 (1992).
[CrossRef]

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.56, 886–888 (1990).
[CrossRef]

Zhang, Z.-W.

Y.-P. Yang, W.-Z. Wang, Z.-W. Zhang, L.-L. Zhang, and C.-L. Zhang, “Dielectric and lattice vibrational spectra of Cu2O hollow spheres in the range of 1–10 THz,” J. Phys. Chem. C115, 10333–10337 (2011).
[CrossRef]

Zotova, Y. B.

Appl. Phys. B

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B71, 901–904 (2000).
[CrossRef]

Appl. Phys. Lett.

X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P. Tham, and E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett.56, 2228–2230 (1990).
[CrossRef]

Y. Jin, X. F. Ma, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Anomalous optically generated THz beams from metal/GaAs interfaces,” Appl. Phys. Lett.65, 682–684 (1994).
[CrossRef]

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett.93, 091106 (2008).
[CrossRef]

M. Li, F. G. Sun, G. A. Wagoner, M. Alexander, and X.-C. Zhang, “Measurement and analysis of terahertz radiation from bulk semiconductors,” Appl. Phys. Lett.67, 25–27 (1995).
[CrossRef]

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31, 292–294 (1977).
[CrossRef]

Y. Shi, Y. Yang, X. Xu, S. Ma, W. Yan, and L. Wang, “Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy,” Appl. Phys. Lett.88, 161109 (2006).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.56, 886–888 (1990).
[CrossRef]

IEEE J. Quantum Electron.

K. Kishino, M. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoç, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27, 2025–2034 (1991).
[CrossRef]

J. Appl. Phys.

G. K. P. Ramanandan, G. Ramakrishnan, and P. C. M. Planken, “Oxidation kinetics of nanoscale copper films studied by terahertz transmission spectroscopy,” J. Appl. Phys.111, 123517 (2012).
[CrossRef]

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys.71, 326–338 (1992).
[CrossRef]

J. A. Assimos and D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys.44, 1687–1693 (1973).
[CrossRef]

J. Chem. Phys.

M. O’Keeffe and W. J. Moore, “Electrical conductivity of monocrystalline cuprous oxide,” J. Chem. Phys.35, 1324–1328 (1961).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public.

P. Mounaix, A. Younus, J. C. Delagnes, E. Abraham, L. Canioni, and M. Fabre, “Spectroscopy and terahertz imaging for sigillography applications,” J. Europ. Opt. Soc. Rap. Public.6, 11002 (2011).
[CrossRef]

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public.4, 09001 (2009).
[CrossRef]

J. Infrared Milli. Terahz. Waves

A. J. L. Adam, “Review of Near-Field Terahertz Measurement Methods and Their Applications,” J. Infrared Milli. Terahz. Waves32, 976–1019 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. C

Y.-P. Yang, W.-Z. Wang, Z.-W. Zhang, L.-L. Zhang, and C.-L. Zhang, “Dielectric and lattice vibrational spectra of Cu2O hollow spheres in the range of 1–10 THz,” J. Phys. Chem. C115, 10333–10337 (2011).
[CrossRef]

Jpn. J. Appl. Phys.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz emission enhancement in InAs thin films using a silicon lens coupler,” Jpn. J. Appl. Phys.50, 080207 (2011).
[CrossRef]

Nano Lett.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10, 2012–2018 (2010).
[CrossRef] [PubMed]

Nanotechnology

R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology19, 455604 (2008).
[CrossRef] [PubMed]

Nat. Mat.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mat.12, 20–24 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Phil. Mag. Lett.

H. Mori, M. Komatsu, K. Takeda, and H. Fujita, “Spontaneous alloying of copper into gold atom clusters,” Phil. Mag. Lett.63, 173–178 (1991).
[CrossRef]

Phys. Rev. B

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

Phys. Rev. Lett.

R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl, “Stimulated terahertz emission from intraexcitonic transitions in Cu2O,” Phys. Rev. Lett.96, 017402 (2006).
[CrossRef] [PubMed]

Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105, 053901 (2010).
[CrossRef] [PubMed]

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett.63, 976–979 (1989).
[CrossRef] [PubMed]

Phys. Status Solidi A

A. Parretta, M. K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering,” Phys. Status Solidi A155, 399–404 (1996).
[CrossRef]

F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A207, 1647–1651 (2010).
[CrossRef]

Phys. Z.

H. Dember, “Photoelectromotive force in cuprous oxide crystals,” Phys. Z.32, 554–556 (1931).

Physica B

A. Urbanowicz, R. Adomavičius, and A. Krotkus, “Terahertz emission from photoexcited surfaces of Ge crystals,” Physica B367, 152–157 (2005).
[CrossRef]

Rev. Mod. Phys.

W. H. Brattain, “The copper oxide rectifier,” Rev. Mod. Phys.23, 203–212 (1951).
[CrossRef]

Science

W. Wan, Y. Chong, Li Ge, H. Noh, A. D. Stone, and Hui Cao, “Time-reversed lasing and interferometric control of absorption,” Science331, 889–892 (2011).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

A. Urbanowicz, R. Adomavičius, A. Krotkus, and V. L. Malevich, “Electron dynamics in Ge crystals studied by terahertz emission from photoexcited surfaces,” Semicond. Sci. Technol.20, 1010–1015 (2005).
[CrossRef]

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26, 075015 (2011).
[CrossRef]

Sol. Energ. Mat. Sol. C.

X. Mathew, N. R. Mathews, and P. J. Sebastian, “Temperature dependence of the optical transitions in electrode-posited Cu2O thin films,” Sol. Energ. Mat. Sol. C.70, 277–286 (2001).
[CrossRef]

Solid-State Electron.

A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron.29, 7–17(1986).
[CrossRef]

Thin Solid Films

S. Yoshida, “Antireflection coatings on metals for selective solar absorbers,” Thin Solid Films, 56, 321–329 (1979).
[CrossRef]

Other

E. Hecht, Optics, 4th ed. (Pearson Education, Inc., San Francisco, 2002).

S. Kasap and P. Capper, ed. Springer Handbook of Electronic and Photonic Materials(Springer Science+Business Media Inc.New York, 2006).

R. Chakkittakandy, “Quasi-near field terahertz spectroscopy,” Ph.D. thesis, Delft University of Technology, The Netherlands (2010).

G. Ramakrishnan, “Enhanced terahertz emission from thin film semiconductor/metal interfaces,” Ph.D. thesis, Delft University of Technology, The Netherlands (2012).

K. Sakai, ed., Terahertz Optoelectronics (Springer-Verlag, Berlin Hiedelberg, 2005).
[CrossRef]

V. V. Afanas’ev, Internal Photoemission Spectroscopy: Principles and Applications (Elsevier, 2008).

M. E. Toimil Molares, “Fabrication and characterisation of copper nanowires electrochemically deposited in etched ion-track membranes,” Ph.D. thesis, Ruperto-Carola University of Heidelberg, Germany (2001).

S. P. Pucic, “Diffusion of copper into gold plating,” in Instrumentation and Measurement Technology Conference, 1993. IMTC/93. Conference Record, IEEE, 114–117 (1993).

G. K. P. Ramanandan, A. J. L. Adam, G. Ramakrishnan, R. Hendrikx, and P. C. M. Planken, “Optical characterization of gold-cuprous oxide interface for terahertz emission applications,” in preparation (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. (b) Measured THz electric field vs. time emitted from an a-Ge layer of thickness 25 nm deposited on glass (black), and on Au (red).

Fig. 2
Fig. 2

(a) Measured THz electric field amplitude (red squares) and pump light absorption (blue) as functions of the thickness of a-Ge thin films sputtered on a glass substrate. (b)–(d) Measured THz field amplitude (red) and pump light absorption (blue) as functions of the thickness of the semiconductor ((b) a-Ge, (c) a-Si, (d) poly-Cu2O) thin films deposited on Au.

Fig. 3
Fig. 3

(a) Measured THz field vs. time, emitted from a 300 μm thick GaP (110) crystal (blue), and a 420 nm thick poly-Cu2O layer deposited on Au (red). (b) Frequency spectra of the THz pulses emitted from a 420 nm Cu2O layer on 200 nm thick Au (red), 25 nm thick a-Ge layer on 200 nm thick Au (blue) and 40 nm thick a-Si layer on 200 nm thick Au μm thick GaP (black). The detection was done in dry-N2 purged atmosphere, using a 300 (110) crystal.

Fig. 4
Fig. 4

Reflection of light from a three layer system of media 1, 2 and 3. d is the thickness of the middle layer.

Fig. 5
Fig. 5

Measured (blue) and calculated (red) values of pump light absorption plotted as a function of the thickness of the a-Ge layers (a) deposited on glass, (b) deposited on Au.

Fig. 6
Fig. 6

Calculated percentage absorption of the pump power by a 25 nm thick layer of a-Ge on Au, for 45° angle of incidence, plotted as a function of the absorption index, κ. The real part of the refractive index, n = 4.5, is kept fixed.

Fig. 7
Fig. 7

Measured THz electric field amplitudes as a function of time, emitted from a-Ge/Au (red), and a-Ge/SiO2/Au (blue).

Fig. 8
Fig. 8

Measured (blue) and calculated (red) values of pump light absorption plotted as a function of a-Si layer thickness on Au.

Fig. 9
Fig. 9

Measured (blue) and calculated (red) values of pump light absorption plotted as a function of Cu2O layer thickness on Au.

Fig. 10
Fig. 10

Schematic of the setup used for the excitation of a Cu2O coated paraboloidal mirror. Inset: A typical THz electric field vs. time, recorded in the setup.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r p = r 12 + r 23 e i 2 k ( z , 2 ) d 1 + r 12 r 23 e i 2 k ( z , 2 ) d
I ( z ) = I o e α z .
α = 4 π κ λ ,

Metrics