Abstract

The coherent injection-locking and directly modulation of a long-cavity colorless laser diode with 1% end-facet reflectance and weak-resonant longitudinal modes is employed as an universal optical transmitter to demonstrated for optical 16-QAM OFDM transmission at 12 Gbit/s over 25 km in a DWDM-PON system. The optimized bias current of 30 mA (~1.5Ith) with corresponding extinction ratio (ER) of 6 dB and the external injection power of −9 dBm is (are) required for such a wavelength-locked universal transmitter to carry the 16-QAM and 122-subcarrier formatted OFDM and data-stream. By increasing external injection-locking from −9 dBm to 0 dBm, the peak-to-peak chirp of the OFDM data stream reduces from 7.7 to 5.4 GHz. The side mode suppression ratio (SMSR) of up to 50 dB is achieved with wider detuning range between −0.5 nm to 2.0 nm under an injection power of 0 dBm. By modulating such a colorless laser diode with an OFDM data stream of 122 subcarriers at a central carrier frequency of 1.5625 GHz and a total bandwidth of 3 GHz, the transmission data rate of up to 12 Gbit/s in standard single-mode fiber over 25 km is demonstrated to achieve an error vector magnitude (EVM) of 5.435%. Such a universal colorless DWDM-PON transmitter can deliver the optical OFDM data-stream at 12 Gbit/s QAM-OFDM data after 25-km transmission with a receiving power sensitivity of −7 dBm at BER of 3.6×10−7 when pre-amplifying the OFDM data by 5 dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
    [CrossRef]
  2. W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
    [CrossRef]
  3. H.-D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
    [CrossRef]
  4. W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008).
    [CrossRef]
  5. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw.4(11), 737–758 (2005).
    [CrossRef]
  6. Y.-H. Lin, C.-J. Lin, G.-C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express19(5), 4067–4075 (2011).
    [CrossRef] [PubMed]
  7. G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON Application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
    [CrossRef]
  8. K.-I. Suzuki, H. Masuda, S. Kawai, K. Aida, and K. Nakagawa, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250km using 76nm (1531-1607nm) gain-band bidirectional erbium-doped fibre amplifiers,” Electron. Lett.33(23), 1967–1968 (1997).
    [CrossRef]
  9. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked fabry–perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol.27(14), 2779–2785 (2009).
    [CrossRef]
  10. S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
    [CrossRef]
  11. Y. J. Wen and C. J. Chae, “WDM-PON upstream transmission using Fabry–Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses,” Opt. Commun.260(2), 691–695 (2006).
    [CrossRef]
  12. S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron., 19, (2013). (to be published)
  13. Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
    [CrossRef] [PubMed]
  14. G.-R. Lin, T.-K. Chen, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010).
    [CrossRef]
  15. G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron.45(9), 1106–1113 (2009).
    [CrossRef]
  16. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
    [CrossRef]
  17. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  18. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs,” J. Lightwave Technol.24(1), 429–441 (2006).
    [CrossRef]
  19. J. Yu, M. F. Huang, D. Qian, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
    [CrossRef]
  20. R.-P. Giddings, X.-Q. Jin, E. Hugues-Salas, E. Giacoumidis, J.-L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express18(6), 5541–5555 (2010).
    [CrossRef] [PubMed]
  21. C.-W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
    [CrossRef]
  22. C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
    [CrossRef] [PubMed]
  23. W.-R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett.22(9), 649–651 (2010).
    [CrossRef]
  24. J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol.27(13), 2412–2419 (2009).
    [CrossRef]
  25. W.-J. Jiang, C.-T. Lin, A. Ng’oma, P.-T. Shih, J. Chen, M. Sauer, F. Annunziata, and S. Chi, “Simple 14-Gb/s short-range radio-over-fiber system employing a single-electrode MZM for 60-GHz wireless applications,” J. Lightwave Technol.28(16), 2238–2246 (2010).
    [CrossRef]
  26. C.-T. Lin, J. Chen, P.-T. Shih, W.-J. Jiang, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol.28(16), 2296–2306 (2010).
    [CrossRef]
  27. C.-T. Lin, Y.-M. Lin, J. J. Chen, S.-P. Dai, P. T. Shih, P.-C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express16(9), 6056–6063 (2008).
    [CrossRef] [PubMed]
  28. G.-R. Lin, Y.-C. Chi, Y.-C. Li, and J. Chen, “Using a L-Band Weak-Resonant-Cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol.31(7), 1079–1087 (2013).
    [CrossRef]
  29. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol.27(16), 3678–3688 (2009).
    [CrossRef]
  30. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012).
    [CrossRef] [PubMed]
  31. Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-connected TO-can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multisubcarrier OOFDM up to 15 Gb/s,” J. Lightwave Technol.31(1), 28–35 (2013).
    [CrossRef]
  32. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982).
    [CrossRef]
  33. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor lasers with external light injection,” IEEE J. Quantum Electron.21(7), 784–793 (1985).
    [CrossRef]
  34. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
    [CrossRef]
  35. L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” (Wiley, New York, 1997).
  36. C.-C. Lin, Y.-C. Chi, H.-C. Kuo, P.-C. Peng, C. J. Chang-Hasnain, and G.-R. Lin, “Beyond-bandwidth electrical pulse modulation of a TO-can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission,” J. Lightwave Technol.29(6), 830–841 (2011).
    [CrossRef]
  37. K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron21(11), 1814–1818 (1985).
    [CrossRef]
  38. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
    [CrossRef]
  39. Y.-H. Lin, G.-C. Lin, H.-L. Wang, Y.-C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission,” Opt. Express18(5), 4457–4468 (2010).
    [CrossRef] [PubMed]
  40. G.-R. Lin, Y.-C. Chi, Y.-S. Liao, H.-C. Kuo, Z.-W. Liao, H.-L. Wang, and G.-C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012).
    [CrossRef] [PubMed]
  41. L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature Amplitude Modulation –Principles and Applications for Personal Communications, WLANS and Broadcasting (John Wiley & Sons, Ltd, 2000).

2013 (2)

2012 (2)

2011 (2)

2010 (7)

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON Application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
[CrossRef]

G.-R. Lin, T.-K. Chen, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010).
[CrossRef]

R.-P. Giddings, X.-Q. Jin, E. Hugues-Salas, E. Giacoumidis, J.-L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

Y.-H. Lin, G.-C. Lin, H.-L. Wang, Y.-C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission,” Opt. Express18(5), 4457–4468 (2010).
[CrossRef] [PubMed]

W.-R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett.22(9), 649–651 (2010).
[CrossRef]

W.-J. Jiang, C.-T. Lin, A. Ng’oma, P.-T. Shih, J. Chen, M. Sauer, F. Annunziata, and S. Chi, “Simple 14-Gb/s short-range radio-over-fiber system employing a single-electrode MZM for 60-GHz wireless applications,” J. Lightwave Technol.28(16), 2238–2246 (2010).
[CrossRef]

C.-T. Lin, J. Chen, P.-T. Shih, W.-J. Jiang, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol.28(16), 2296–2306 (2010).
[CrossRef]

2009 (5)

2008 (5)

2007 (1)

2006 (3)

Y. J. Wen and C. J. Chae, “WDM-PON upstream transmission using Fabry–Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses,” Opt. Commun.260(2), 691–695 (2006).
[CrossRef]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs,” J. Lightwave Technol.24(1), 429–441 (2006).
[CrossRef]

2005 (4)

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw.4(11), 737–758 (2005).
[CrossRef]

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

2003 (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

2000 (1)

H.-D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

1997 (1)

K.-I. Suzuki, H. Masuda, S. Kawai, K. Aida, and K. Nakagawa, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250km using 76nm (1531-1607nm) gain-band bidirectional erbium-doped fibre amplifiers,” Electron. Lett.33(23), 1967–1968 (1997).
[CrossRef]

1985 (2)

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor lasers with external light injection,” IEEE J. Quantum Electron.21(7), 784–793 (1985).
[CrossRef]

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron21(11), 1814–1818 (1985).
[CrossRef]

1982 (2)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982).
[CrossRef]

Aida, K.

K.-I. Suzuki, H. Masuda, S. Kawai, K. Aida, and K. Nakagawa, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250km using 76nm (1531-1607nm) gain-band bidirectional erbium-doped fibre amplifiers,” Electron. Lett.33(23), 1967–1968 (1997).
[CrossRef]

Amann, M. C.

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008).
[CrossRef]

Annunziata, F.

Arellano, C.

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Banerjee, A.

Bao, H.

Bock, C.

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

Bohm, G.

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008).
[CrossRef]

Chae, C. J.

Y. J. Wen and C. J. Chae, “WDM-PON upstream transmission using Fabry–Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses,” Opt. Commun.260(2), 691–695 (2006).
[CrossRef]

Chae, C.-J.

Chang, G.-K.

J. Yu, M. F. Huang, D. Qian, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chang-Hasnain, C. J.

Chen, J.

Chen, J. J.

Chen, T.-K.

Chen, Y.-J.

Cheng, T.-K.

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked fabry–perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol.27(14), 2779–2785 (2009).
[CrossRef]

G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron.45(9), 1106–1113 (2009).
[CrossRef]

Cheng, X.-F.

Chi, S.

Chi, Y.-C.

G.-R. Lin, Y.-C. Chi, Y.-C. Li, and J. Chen, “Using a L-Band Weak-Resonant-Cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol.31(7), 1079–1087 (2013).
[CrossRef]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-connected TO-can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multisubcarrier OOFDM up to 15 Gb/s,” J. Lightwave Technol.31(1), 28–35 (2013).
[CrossRef]

G.-R. Lin, Y.-C. Chi, Y.-S. Liao, H.-C. Kuo, Z.-W. Liao, H.-L. Wang, and G.-C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012).
[CrossRef] [PubMed]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012).
[CrossRef] [PubMed]

C.-C. Lin, Y.-C. Chi, H.-C. Kuo, P.-C. Peng, C. J. Chang-Hasnain, and G.-R. Lin, “Beyond-bandwidth electrical pulse modulation of a TO-can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission,” J. Lightwave Technol.29(6), 830–841 (2011).
[CrossRef]

Y.-H. Lin, G.-C. Lin, H.-L. Wang, Y.-C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission,” Opt. Express18(5), 4457–4468 (2010).
[CrossRef] [PubMed]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON Application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
[CrossRef]

Cho, S. H.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Choi, K.-M.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

Chow, C.-W.

C.-W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

Clarke, F.

Dai, S.-P.

Giacoumidis, E.

Giddings, R. P.

Giddings, R.-P.

Hamié, A.

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
[CrossRef]

Hofmann, W.

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008).
[CrossRef]

Huang, M. F.

J. Yu, M. F. Huang, D. Qian, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Huang, Y.-H.

Hugues-Salas, E.

Jacobsen, G.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor lasers with external light injection,” IEEE J. Quantum Electron.21(7), 784–793 (1985).
[CrossRef]

Jeong, G.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Jiang, W.-J.

Jin, X. Q.

Jin, X.-Q.

Kang, S.-G.

H.-D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

Kawai, S.

K.-I. Suzuki, H. Masuda, S. Kawai, K. Aida, and K. Nakagawa, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250km using 76nm (1531-1607nm) gain-band bidirectional erbium-doped fibre amplifiers,” Electron. Lett.33(23), 1967–1968 (1997).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Kikuchi, K.

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron21(11), 1814–1818 (1985).
[CrossRef]

Kim, B. W.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Kim, C.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Kim, H.-D.

H.-D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

Kim, K.

Kramer, G.

Kuo, H.-C.

Lane, P. M.

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982).
[CrossRef]

Lee, C.-H.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

H.-D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

Lee, J.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Lee, S.-M.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

Lee, W. R.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Li, Y.-C.

Liao, Y.-S.

Liao, Z.-W.

Lin, C.-C.

Lin, C.-J.

Lin, C.-T.

Lin, G.-C.

G.-R. Lin, Y.-C. Chi, Y.-S. Liao, H.-C. Kuo, Z.-W. Liao, H.-L. Wang, and G.-C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012).
[CrossRef] [PubMed]

Y.-H. Lin, C.-J. Lin, G.-C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express19(5), 4067–4075 (2011).
[CrossRef] [PubMed]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON Application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
[CrossRef]

G.-R. Lin, T.-K. Chen, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010).
[CrossRef]

Y.-H. Lin, G.-C. Lin, H.-L. Wang, Y.-C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission,” Opt. Express18(5), 4457–4468 (2010).
[CrossRef] [PubMed]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked fabry–perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol.27(14), 2779–2785 (2009).
[CrossRef]

G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron.45(9), 1106–1113 (2009).
[CrossRef]

Lin, G.-R.

G.-R. Lin, Y.-C. Chi, Y.-C. Li, and J. Chen, “Using a L-Band Weak-Resonant-Cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol.31(7), 1079–1087 (2013).
[CrossRef]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-connected TO-can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multisubcarrier OOFDM up to 15 Gb/s,” J. Lightwave Technol.31(1), 28–35 (2013).
[CrossRef]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012).
[CrossRef] [PubMed]

G.-R. Lin, Y.-C. Chi, Y.-S. Liao, H.-C. Kuo, Z.-W. Liao, H.-L. Wang, and G.-C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012).
[CrossRef] [PubMed]

C.-C. Lin, Y.-C. Chi, H.-C. Kuo, P.-C. Peng, C. J. Chang-Hasnain, and G.-R. Lin, “Beyond-bandwidth electrical pulse modulation of a TO-can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission,” J. Lightwave Technol.29(6), 830–841 (2011).
[CrossRef]

Y.-H. Lin, C.-J. Lin, G.-C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express19(5), 4067–4075 (2011).
[CrossRef] [PubMed]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON Application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
[CrossRef]

G.-R. Lin, T.-K. Chen, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010).
[CrossRef]

Y.-H. Lin, G.-C. Lin, H.-L. Wang, Y.-C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission,” Opt. Express18(5), 4457–4468 (2010).
[CrossRef] [PubMed]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked fabry–perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol.27(14), 2779–2785 (2009).
[CrossRef]

G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron.45(9), 1106–1113 (2009).
[CrossRef]

Lin, Y.-H.

Lin, Y.-M.

Lu, C.

Lu, H.-H.

Masuda, H.

K.-I. Suzuki, H. Masuda, S. Kawai, K. Aida, and K. Nakagawa, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250km using 76nm (1531-1607nm) gain-band bidirectional erbium-doped fibre amplifiers,” Electron. Lett.33(23), 1967–1968 (1997).
[CrossRef]

Mogensen, F.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor lasers with external light injection,” IEEE J. Quantum Electron.21(7), 784–793 (1985).
[CrossRef]

Moon, J.-H.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

Mukherjee, B.

Mun, S.-G.

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Nakagawa, K.

K.-I. Suzuki, H. Masuda, S. Kawai, K. Aida, and K. Nakagawa, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250km using 76nm (1531-1607nm) gain-band bidirectional erbium-doped fibre amplifiers,” Electron. Lett.33(23), 1967–1968 (1997).
[CrossRef]

Ng’oma, A.

Okoshi, T.

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron21(11), 1814–1818 (1985).
[CrossRef]

Olesen, H.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor lasers with external light injection,” IEEE J. Quantum Electron.21(7), 784–793 (1985).
[CrossRef]

Ortsiefer, M.

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008).
[CrossRef]

Pan, C.-L.

Park, M. Y.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Park, Y.

Peng, P.-C.

Peng, W.-R.

W.-R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett.22(9), 649–651 (2010).
[CrossRef]

Polo, V.

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

Prat, J.

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

Qian, D.

J. Yu, M. F. Huang, D. Qian, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Sauer, M.

Shankar, J.

Shieh, W.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

Shih, F. Y.

C.-W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

Shih, F.-Y.

Shih, P. T.

Shih, P.-T.

Shore, K. A.

Song, H.

Suzuki, K.-I.

K.-I. Suzuki, H. Masuda, S. Kawai, K. Aida, and K. Nakagawa, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250km using 76nm (1531-1607nm) gain-band bidirectional erbium-doped fibre amplifiers,” Electron. Lett.33(23), 1967–1968 (1997).
[CrossRef]

Tang, J. M.

Tang, Y.

Wang, C. H.

C.-W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

Wang, C.-H.

Wang, H.-L.

G.-R. Lin, Y.-C. Chi, Y.-S. Liao, H.-C. Kuo, Z.-W. Liao, H.-L. Wang, and G.-C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012).
[CrossRef] [PubMed]

Y.-H. Lin, G.-C. Lin, H.-L. Wang, Y.-C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission,” Opt. Express18(5), 4457–4468 (2010).
[CrossRef] [PubMed]

G.-R. Lin, T.-K. Chen, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010).
[CrossRef]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON Application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
[CrossRef]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked fabry–perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol.27(14), 2779–2785 (2009).
[CrossRef]

G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron.45(9), 1106–1113 (2009).
[CrossRef]

Wang, H.-Y.

Wang, Y.

Wei, J. L.

Wei, J.-L.

Wen, Y. J.

Y. J. Wen and C. J. Chae, “WDM-PON upstream transmission using Fabry–Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses,” Opt. Commun.260(2), 691–695 (2006).
[CrossRef]

Wen, Y.-J.

Wong, E.

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008).
[CrossRef]

Xu, Z.

Yang, S.

Yeh, C. H.

C.-W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

Yeh, C.-H.

Yu, J.

J. Yu, M. F. Huang, D. Qian, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Zhong, W.-D.

Zhu, N. H.

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008).
[CrossRef]

Electron. Lett. (2)

K.-I. Suzuki, H. Masuda, S. Kawai, K. Aida, and K. Nakagawa, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250km using 76nm (1531-1607nm) gain-band bidirectional erbium-doped fibre amplifiers,” Electron. Lett.33(23), 1967–1968 (1997).
[CrossRef]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

IEEE J. Quantum Electron (1)

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron21(11), 1814–1818 (1985).
[CrossRef]

IEEE J. Quantum Electron. (5)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982).
[CrossRef]

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor lasers with external light injection,” IEEE J. Quantum Electron.21(7), 784–793 (1985).
[CrossRef]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron.45(9), 1106–1113 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

J. Yu, M. F. Huang, D. Qian, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005).
[CrossRef]

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

H.-D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008).
[CrossRef]

W.-R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett.22(9), 649–651 (2010).
[CrossRef]

C.-W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

J. Lightwave Technol. (11)

G.-R. Lin, Y.-C. Chi, Y.-C. Li, and J. Chen, “Using a L-Band Weak-Resonant-Cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol.31(7), 1079–1087 (2013).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol.27(16), 3678–3688 (2009).
[CrossRef]

J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol.27(13), 2412–2419 (2009).
[CrossRef]

W.-J. Jiang, C.-T. Lin, A. Ng’oma, P.-T. Shih, J. Chen, M. Sauer, F. Annunziata, and S. Chi, “Simple 14-Gb/s short-range radio-over-fiber system employing a single-electrode MZM for 60-GHz wireless applications,” J. Lightwave Technol.28(16), 2238–2246 (2010).
[CrossRef]

C.-T. Lin, J. Chen, P.-T. Shih, W.-J. Jiang, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol.28(16), 2296–2306 (2010).
[CrossRef]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked fabry–perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol.27(14), 2779–2785 (2009).
[CrossRef]

G.-R. Lin, T.-K. Chen, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010).
[CrossRef]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON Application,” J. Lightwave Technol.28(20), 2925–2932 (2010).
[CrossRef]

J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs,” J. Lightwave Technol.24(1), 429–441 (2006).
[CrossRef]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-connected TO-can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multisubcarrier OOFDM up to 15 Gb/s,” J. Lightwave Technol.31(1), 28–35 (2013).
[CrossRef]

C.-C. Lin, Y.-C. Chi, H.-C. Kuo, P.-C. Peng, C. J. Chang-Hasnain, and G.-R. Lin, “Beyond-bandwidth electrical pulse modulation of a TO-can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission,” J. Lightwave Technol.29(6), 830–841 (2011).
[CrossRef]

J. Opt. Netw. (1)

Opt. Commun. (1)

Y. J. Wen and C. J. Chae, “WDM-PON upstream transmission using Fabry–Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses,” Opt. Commun.260(2), 691–695 (2006).
[CrossRef]

Opt. Express (9)

Y.-H. Lin, C.-J. Lin, G.-C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express19(5), 4067–4075 (2011).
[CrossRef] [PubMed]

Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
[CrossRef] [PubMed]

R.-P. Giddings, X.-Q. Jin, E. Hugues-Salas, E. Giacoumidis, J.-L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

C.-T. Lin, Y.-M. Lin, J. J. Chen, S.-P. Dai, P. T. Shih, P.-C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express16(9), 6056–6063 (2008).
[CrossRef] [PubMed]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012).
[CrossRef] [PubMed]

C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

Y.-H. Lin, G.-C. Lin, H.-L. Wang, Y.-C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission,” Opt. Express18(5), 4457–4468 (2010).
[CrossRef] [PubMed]

G.-R. Lin, Y.-C. Chi, Y.-S. Liao, H.-C. Kuo, Z.-W. Liao, H.-L. Wang, and G.-C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012).
[CrossRef] [PubMed]

Other (3)

L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature Amplitude Modulation –Principles and Applications for Personal Communications, WLANS and Broadcasting (John Wiley & Sons, Ltd, 2000).

L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” (Wiley, New York, 1997).

S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron., 19, (2013). (to be published)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The optical 16-QAM and 122-subcarrier OFDM testing bench for a directly modulated long-cavity colorless WRC-FPLD that is coherently injection-locked by tunable laser. Middle inset: the device configuration and the photograph of long-cavity colorless WRC-FPLD. AWG: arbitrary waveform generator, TL: tunable laser, OSA: optical spectrum analyzer, PD: photodetector, Amp: amplifier. DSO: digital signal oscilloscope.

Fig. 2
Fig. 2

(a) P-I curve, (b) relative intensity noise spectra, (c) optical spectra, (d) frequency responses of the long-cavity colorless WRC-FPLD free-running and injection-locked at different powers.

Fig. 3
Fig. 3

(a) The extinction ratio of the received OFDM data-stream carried by the WRC-FPLD transmitter at different bias currents. (b) The 3D contour of SMSR for the injection-locked WRC-FPLD as a function of detuning wavelength and injection power.

Fig. 4
Fig. 4

The back-to-back BER of OFDM data transmitted with long-cavity colorless WRC-FPLD at different biased currents and injection-locking powers.

Fig. 5
Fig. 5

(a) Peak-to-peak frequency chirp of the directly modulated WRC-FPLD with a PRBS pattern at 3 Gbit/s versus the external injection-locking power. (b) The SNR and BER performance as a function of the negative power-to-frequency slope of electrical OFDM data-stream.

Fig. 6
Fig. 6

Received 16-QAM-OFDM data-streams and decoded constellation plots from free-running (left) and injection-locked (right) WRC-FPLDs.

Fig. 7
Fig. 7

The BER of received OFDM data after 25-km SMF transmission versus the bias currents and the injection-locking power.

Fig. 8
Fig. 8

Left: the worst and best normalized RF spectra (left) and constellation plots (middle) of the 16-QAM/122-subcarrier OFDM data carrier. Right: the 3-D BER contour (right) as a function of the gain of microwave amplifier and the bias current of the colorless WRC-FPLD.

Tables (1)

Tables Icon

Table 1 Characteristic Parameters of WRC-FPLD

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dN(t) dt = η i I q N(t) τ s Γ υ g g'[ N(t) N tr ]S(t)0,
dS(t) dt = 1 2 { [ Γ υ g g'( N(t) N tr ) 1 τ p ] }S(t)+ β sp N(t) τ s +κ S inj S(t) cosϕ(t)0,
dϕ(t) dt = α 2 { [ Γ υ g g'( N(t) N tr ) 1 τ p ] }κ S inj S(t) sinϕ(t)Δ ω inj 0,
ϕ s = sin 1 ( Δ ω inj κ 1+ α 2 S s S inj ) tan 1 α tan 1 α.
[ Γ υ g g'( N s N tr ) 1 τ p ]= 2κ 1+ α 2 S inj S s .
I th ' I th I inj = q η i [ ( N s τ s S s τ p ) 2κ 1+ α 2 S inj S s ],
P out = η 0 η i hν q ( I q η i [ ( N s τ s S s τ p ) 2κ 1+ α 2 S inj S s ] ),
ω r = Γ v g g' qV { I q η i [ ( N s τ s S s τ p ) 2κ 1+ α 2 S inj S s ] } ,
RIN= 16 (Δν) ST ω r 4 τ ΔN 2 + 2hv P 0 [ η 0 I+ I th ' I I th ' +(1 η 0 ) ] = 16 Γ 2 v g g n sp V (Γ v g g ' (I I th ' ) qV ) 2 τ ΔN 2 + 2hv η 0 η i hν q ( I I th ' ) [ η 0 I+ I th ' I I th ' +(1 η 0 ) ], = 16g n sp V q 2 v g g ' 2 (I I th ' ) 2 τ ΔN 2 + 2 η i q ( I I th ' ) [ I+ I th ' I I th ' + (1 η 0 ) η 0 ] = 1 (I I th ' ) 2 { 16g n sp V q 2 v g g ' 2 τ ΔN 2 + 2q η i [ ( I I th ' ) η 0 +2 I th ' ] }

Metrics