Abstract

We study the quantification of whiteness perception under illumination from various light sources. We discuss an existing metric for sources with high correlated color temperature (CCT), CIE whiteness, and propose a procedure to adapt it to sources of any CCT. We illustrate our approach by comparing the ability of different warm-white sources to render whiteness. We show that a careful engineering of the spectrum –facilitated by the flexibility of light-emitting diode sources – is essential to render whiteness.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ganz, “Whiteness - photometric specification and colorimetric evaluation,” Appl. Opt.15(9), 2039–2058 (1976).
    [CrossRef] [PubMed]
  2. P. S. Stensby, “Questions in regard to whiteness evaluation,” Journal of Color Appearance2(1), 39–42 (1973).
  3. D. L. MacAdam, “Specification of whiteness,” J. Opt. Soc. Am.24(7), 188 (1934).
    [CrossRef]
  4. R. S. Hunter, “Description and measurement of white surfaces,” J. Opt. Soc. Am.48(9), 597–605 (1958).
    [CrossRef]
  5. F. Grum, R. F. Witzel, and P. Stensby, “Evaluation of whiteness,” J. Opt. Soc. Am.64(2), 210–215 (1974).
    [CrossRef] [PubMed]
  6. E. Ganz, “Whiteness formulas - a selection,” Appl. Opt.18(7), 1073–1078 (1979).
    [CrossRef] [PubMed]
  7. E. Ganz, “Whiteness perception - individual-differences and common trends,” Appl. Opt.18(17), 2963–2970 (1979).
    [CrossRef] [PubMed]
  8. P. Krais, “On a new black and a new white,” Melliand Textileber10, 468 (1929).
  9. A. E. Siegrlst, H. Hefti, H. R. Meyer, and E. Schmidt, “Fluorescent whitening agents 1973–1985,” Review of Progress in Coloration and Related Topics17(1), 39–55 (1987).
    [CrossRef]
  10. J. Schanda (Editor), Colorimetry: Understanding the CIE System (John Wiley and Sons, Hoboken (NY), 2007).
  11. J. C. Zwinkels and M. Noel, “CIE whiteness assessment of papers: impact of LED illumination,” in “27th Session of the CIE,” (Sun City, South Africa, 2011).
  12. “Colorimetry, 3rd edition,” CIE Technical report CIE 15.3:2004 (2004).
  13. B. D. Jordan and M. A. O’Neill, “The whiteness of paper - colorimetry and visual ranking,” TAPPI Journal74(5), 93–101 (1991).
  14. “Paper and board - determination of CIE whiteness, D65/10° (outdoor daylight),” ISO norm 11475:2004(E) (2004).
  15. “Paper and board - determination of CIE whiteness, C/2° (indoor illumination conditions),” ISO norm 11476:2010(E) (2010).
  16. R. Griesser, “Assessment of whiteness and tint of fluorescent substrates with good interinstrument correlation,” Col. Res. Appl.19(6), 446–460 (1994).
    [CrossRef]
  17. R. Griesser, “CIE whiteness and tint : possible improvements,” APPITA Journal49(2), 105 (1996).
  18. E. Ganz and R. Griesser, “Whiteness - assessment of tint,” Appl. Opt.20(8), 1395–1396 (1981).
    [CrossRef] [PubMed]
  19. H. Hemmendinger and J. Lambert, “The importance of chromaticity in the evaluation of whiteness,” Journal of the American Oil Chemists Society30(4), 163–168 (1953).
    [CrossRef]
  20. I. Katayama, K. Masumi, and T. Aoki, “Quantitative evaluation of perceived whiteness under different illuminations,” Journal of Light and Visual Environment31(2), 80–88 (2007).
    [CrossRef]
  21. M. Ayama, T. Akatsu, E. Toriumi, K. Mukai, and S. Kanaya, “Whiteness perception under different types of fluorescent lamps,” Col. Res. Appl.28(2), 96–102 (2003).
    [CrossRef]
  22. I. Katayama, M. Iiyama, and K. Masumi, “Effect of spectral distribution of an illuminant on perceived whiteness,” Journal of Light and Visual Environment25(2), 41 (2001).
    [CrossRef]
  23. Indeed, ω represents the relative sensitivity of luminance factor Y and blue-shift to whiteness. In our samples the value of Y barely depends on the source, only the color shift is significantly different. Therefore a change in ω would rescale the whiteness values but would not change the relative rankings of whiteness under the different sources. Regarding φ, its value has a very small numerical effect so long as it is close to 0°, as discussed in [1].
  24. M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
    [CrossRef]
  25. J. Zwinkels, “Surface fluorescence: the only standardized method of measuring luminescence,” in “Standardization and Quality Assurance in Fluorescence Measurements I,”, vol. 5 of Springer Series on Fluorescence, U. Resch-Genger Editor (Springer BerlinHeidelberg, 2008), pp. 163–192.
    [CrossRef]
  26. “Calibration methods and photoluminescent standards for total radiance factor measurements,” CIE Technical report CIE 182:2007 (2007).

2012 (1)

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

2007 (1)

I. Katayama, K. Masumi, and T. Aoki, “Quantitative evaluation of perceived whiteness under different illuminations,” Journal of Light and Visual Environment31(2), 80–88 (2007).
[CrossRef]

2003 (1)

M. Ayama, T. Akatsu, E. Toriumi, K. Mukai, and S. Kanaya, “Whiteness perception under different types of fluorescent lamps,” Col. Res. Appl.28(2), 96–102 (2003).
[CrossRef]

2001 (1)

I. Katayama, M. Iiyama, and K. Masumi, “Effect of spectral distribution of an illuminant on perceived whiteness,” Journal of Light and Visual Environment25(2), 41 (2001).
[CrossRef]

1996 (1)

R. Griesser, “CIE whiteness and tint : possible improvements,” APPITA Journal49(2), 105 (1996).

1994 (1)

R. Griesser, “Assessment of whiteness and tint of fluorescent substrates with good interinstrument correlation,” Col. Res. Appl.19(6), 446–460 (1994).
[CrossRef]

1991 (1)

B. D. Jordan and M. A. O’Neill, “The whiteness of paper - colorimetry and visual ranking,” TAPPI Journal74(5), 93–101 (1991).

1987 (1)

A. E. Siegrlst, H. Hefti, H. R. Meyer, and E. Schmidt, “Fluorescent whitening agents 1973–1985,” Review of Progress in Coloration and Related Topics17(1), 39–55 (1987).
[CrossRef]

1981 (1)

1979 (2)

1976 (1)

1974 (1)

1973 (1)

P. S. Stensby, “Questions in regard to whiteness evaluation,” Journal of Color Appearance2(1), 39–42 (1973).

1958 (1)

1953 (1)

H. Hemmendinger and J. Lambert, “The importance of chromaticity in the evaluation of whiteness,” Journal of the American Oil Chemists Society30(4), 163–168 (1953).
[CrossRef]

1934 (1)

1929 (1)

P. Krais, “On a new black and a new white,” Melliand Textileber10, 468 (1929).

Akatsu, T.

M. Ayama, T. Akatsu, E. Toriumi, K. Mukai, and S. Kanaya, “Whiteness perception under different types of fluorescent lamps,” Col. Res. Appl.28(2), 96–102 (2003).
[CrossRef]

Aldaz, R. I.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

Aoki, T.

I. Katayama, K. Masumi, and T. Aoki, “Quantitative evaluation of perceived whiteness under different illuminations,” Journal of Light and Visual Environment31(2), 80–88 (2007).
[CrossRef]

Ayama, M.

M. Ayama, T. Akatsu, E. Toriumi, K. Mukai, and S. Kanaya, “Whiteness perception under different types of fluorescent lamps,” Col. Res. Appl.28(2), 96–102 (2003).
[CrossRef]

Chakraborty, A.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

Cich, M. J.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

David, A.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

Ganz, E.

Griesser, R.

R. Griesser, “CIE whiteness and tint : possible improvements,” APPITA Journal49(2), 105 (1996).

R. Griesser, “Assessment of whiteness and tint of fluorescent substrates with good interinstrument correlation,” Col. Res. Appl.19(6), 446–460 (1994).
[CrossRef]

E. Ganz and R. Griesser, “Whiteness - assessment of tint,” Appl. Opt.20(8), 1395–1396 (1981).
[CrossRef] [PubMed]

Grum, F.

Grundmann, M. J.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

Hefti, H.

A. E. Siegrlst, H. Hefti, H. R. Meyer, and E. Schmidt, “Fluorescent whitening agents 1973–1985,” Review of Progress in Coloration and Related Topics17(1), 39–55 (1987).
[CrossRef]

Hemmendinger, H.

H. Hemmendinger and J. Lambert, “The importance of chromaticity in the evaluation of whiteness,” Journal of the American Oil Chemists Society30(4), 163–168 (1953).
[CrossRef]

Hunter, R. S.

Iiyama, M.

I. Katayama, M. Iiyama, and K. Masumi, “Effect of spectral distribution of an illuminant on perceived whiteness,” Journal of Light and Visual Environment25(2), 41 (2001).
[CrossRef]

Jordan, B. D.

B. D. Jordan and M. A. O’Neill, “The whiteness of paper - colorimetry and visual ranking,” TAPPI Journal74(5), 93–101 (1991).

Kanaya, S.

M. Ayama, T. Akatsu, E. Toriumi, K. Mukai, and S. Kanaya, “Whiteness perception under different types of fluorescent lamps,” Col. Res. Appl.28(2), 96–102 (2003).
[CrossRef]

Katayama, I.

I. Katayama, K. Masumi, and T. Aoki, “Quantitative evaluation of perceived whiteness under different illuminations,” Journal of Light and Visual Environment31(2), 80–88 (2007).
[CrossRef]

I. Katayama, M. Iiyama, and K. Masumi, “Effect of spectral distribution of an illuminant on perceived whiteness,” Journal of Light and Visual Environment25(2), 41 (2001).
[CrossRef]

Krais, P.

P. Krais, “On a new black and a new white,” Melliand Textileber10, 468 (1929).

Krames, M. R.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

Lambert, J.

H. Hemmendinger and J. Lambert, “The importance of chromaticity in the evaluation of whiteness,” Journal of the American Oil Chemists Society30(4), 163–168 (1953).
[CrossRef]

MacAdam, D. L.

Masumi, K.

I. Katayama, K. Masumi, and T. Aoki, “Quantitative evaluation of perceived whiteness under different illuminations,” Journal of Light and Visual Environment31(2), 80–88 (2007).
[CrossRef]

I. Katayama, M. Iiyama, and K. Masumi, “Effect of spectral distribution of an illuminant on perceived whiteness,” Journal of Light and Visual Environment25(2), 41 (2001).
[CrossRef]

Meyer, H. R.

A. E. Siegrlst, H. Hefti, H. R. Meyer, and E. Schmidt, “Fluorescent whitening agents 1973–1985,” Review of Progress in Coloration and Related Topics17(1), 39–55 (1987).
[CrossRef]

Mukai, K.

M. Ayama, T. Akatsu, E. Toriumi, K. Mukai, and S. Kanaya, “Whiteness perception under different types of fluorescent lamps,” Col. Res. Appl.28(2), 96–102 (2003).
[CrossRef]

Noel, M.

J. C. Zwinkels and M. Noel, “CIE whiteness assessment of papers: impact of LED illumination,” in “27th Session of the CIE,” (Sun City, South Africa, 2011).

O’Neill, M. A.

B. D. Jordan and M. A. O’Neill, “The whiteness of paper - colorimetry and visual ranking,” TAPPI Journal74(5), 93–101 (1991).

Schmidt, E.

A. E. Siegrlst, H. Hefti, H. R. Meyer, and E. Schmidt, “Fluorescent whitening agents 1973–1985,” Review of Progress in Coloration and Related Topics17(1), 39–55 (1987).
[CrossRef]

Siegrlst, A. E.

A. E. Siegrlst, H. Hefti, H. R. Meyer, and E. Schmidt, “Fluorescent whitening agents 1973–1985,” Review of Progress in Coloration and Related Topics17(1), 39–55 (1987).
[CrossRef]

Stensby, P.

Stensby, P. S.

P. S. Stensby, “Questions in regard to whiteness evaluation,” Journal of Color Appearance2(1), 39–42 (1973).

Steranka, F. M.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

Toriumi, E.

M. Ayama, T. Akatsu, E. Toriumi, K. Mukai, and S. Kanaya, “Whiteness perception under different types of fluorescent lamps,” Col. Res. Appl.28(2), 96–102 (2003).
[CrossRef]

Tyagi, A.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

Witzel, R. F.

Zhang, M.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

Zwinkels, J.

J. Zwinkels, “Surface fluorescence: the only standardized method of measuring luminescence,” in “Standardization and Quality Assurance in Fluorescence Measurements I,”, vol. 5 of Springer Series on Fluorescence, U. Resch-Genger Editor (Springer BerlinHeidelberg, 2008), pp. 163–192.
[CrossRef]

Zwinkels, J. C.

J. C. Zwinkels and M. Noel, “CIE whiteness assessment of papers: impact of LED illumination,” in “27th Session of the CIE,” (Sun City, South Africa, 2011).

APPITA Journal (1)

R. Griesser, “CIE whiteness and tint : possible improvements,” APPITA Journal49(2), 105 (1996).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett.101(22), 223509 (2012).
[CrossRef]

Col. Res. Appl. (2)

R. Griesser, “Assessment of whiteness and tint of fluorescent substrates with good interinstrument correlation,” Col. Res. Appl.19(6), 446–460 (1994).
[CrossRef]

M. Ayama, T. Akatsu, E. Toriumi, K. Mukai, and S. Kanaya, “Whiteness perception under different types of fluorescent lamps,” Col. Res. Appl.28(2), 96–102 (2003).
[CrossRef]

J. Opt. Soc. Am. (3)

Journal of Color Appearance (1)

P. S. Stensby, “Questions in regard to whiteness evaluation,” Journal of Color Appearance2(1), 39–42 (1973).

Journal of Light and Visual Environment (2)

I. Katayama, M. Iiyama, and K. Masumi, “Effect of spectral distribution of an illuminant on perceived whiteness,” Journal of Light and Visual Environment25(2), 41 (2001).
[CrossRef]

I. Katayama, K. Masumi, and T. Aoki, “Quantitative evaluation of perceived whiteness under different illuminations,” Journal of Light and Visual Environment31(2), 80–88 (2007).
[CrossRef]

Journal of the American Oil Chemists Society (1)

H. Hemmendinger and J. Lambert, “The importance of chromaticity in the evaluation of whiteness,” Journal of the American Oil Chemists Society30(4), 163–168 (1953).
[CrossRef]

Melliand Textileber (1)

P. Krais, “On a new black and a new white,” Melliand Textileber10, 468 (1929).

Review of Progress in Coloration and Related Topics (1)

A. E. Siegrlst, H. Hefti, H. R. Meyer, and E. Schmidt, “Fluorescent whitening agents 1973–1985,” Review of Progress in Coloration and Related Topics17(1), 39–55 (1987).
[CrossRef]

TAPPI Journal (1)

B. D. Jordan and M. A. O’Neill, “The whiteness of paper - colorimetry and visual ranking,” TAPPI Journal74(5), 93–101 (1991).

Other (8)

“Paper and board - determination of CIE whiteness, D65/10° (outdoor daylight),” ISO norm 11475:2004(E) (2004).

“Paper and board - determination of CIE whiteness, C/2° (indoor illumination conditions),” ISO norm 11476:2010(E) (2010).

J. Schanda (Editor), Colorimetry: Understanding the CIE System (John Wiley and Sons, Hoboken (NY), 2007).

J. C. Zwinkels and M. Noel, “CIE whiteness assessment of papers: impact of LED illumination,” in “27th Session of the CIE,” (Sun City, South Africa, 2011).

“Colorimetry, 3rd edition,” CIE Technical report CIE 15.3:2004 (2004).

Indeed, ω represents the relative sensitivity of luminance factor Y and blue-shift to whiteness. In our samples the value of Y barely depends on the source, only the color shift is significantly different. Therefore a change in ω would rescale the whiteness values but would not change the relative rankings of whiteness under the different sources. Regarding φ, its value has a very small numerical effect so long as it is close to 0°, as discussed in [1].

J. Zwinkels, “Surface fluorescence: the only standardized method of measuring luminescence,” in “Standardization and Quality Assurance in Fluorescence Measurements I,”, vol. 5 of Springer Series on Fluorescence, U. Resch-Genger Editor (Springer BerlinHeidelberg, 2008), pp. 163–192.
[CrossRef]

“Calibration methods and photoluminescent standards for total radiance factor measurements,” CIE Technical report CIE 182:2007 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Geometry corresponding to the CIE whiteness formula. The black dot is the white point of the reference illuminant. Tint variations are nearly perpendicular to the dominant wavelength; whiteness variations are nearly parallel to it (the small angle φ accounts for average tint preference). The dotted box illustrates the limits of the CIE formula (upper and lower bounds for whiteness and tint).

Fig. 2
Fig. 2

Geometry for the generalization of the whiteness formula. For any source, the same construction can be applied as for D65, by considering color shifts parallel and perpendicular to the λd = 470 nm direction. Here this is illustrated for two sources on the blackbody locus (dotted line) at 6500 K and 3000 K.

Fig. 3
Fig. 3

Optical properties of a) W115 and b) W130. The shaded areas depict reflectance/luminescence as a function of excitation wavelength λ. Deep gray: reflectance (R); light gray: FWA absorption (A) e.g. fraction of the light which is absorbed and re-emitted as luminescence L; white: loss. The superimposed red line is the luminescence spectrum L(380, λ′) at an excitation wavelength λ = 380 nm (amplitude in arbitrary units).

Fig. 4
Fig. 4

Computed output spectra of the W130 sample illuminated by a BB radiator (black), a BLED (blue) and a 6%-VLED (magenta).

Fig. 5
Fig. 5

Whiteness of two objects under various sources. (a) W115 sample: whiteness under illumination by VLEDs, versus violet leak (magenta line). The horizontal lines are the whiteness under illumination by a BLED and a 3000 K BB radiator, respectively. (b) Corresponding (x, y) coordinates. The points correspond to the reference white point of the sources (”Ref”), the BLED, the BB radiator and the VLEDs, (label = violet leak value). The dashed lines correspond to tint values of ±3. (c–d) Same as (a–b) for the W130 sample.

Fig. 6
Fig. 6

Whiteness of 3000 K sources versus CIE whiteness, for the series of whiteness standards. The BB and VLED show similar behavior and their whiteness increases with CIE whiteness, as expected. The BLED, however, shows no trend due to a lack of fluorescence. The dashed line shows the diagonal x = y : all 3000 K sources induce less whiteness than D65. For W82, which contains no FWAs, all sources yield the same whiteness.

Fig. 7
Fig. 7

Color distance Duv between a halogen source and various LED sources, for the series of white standards. Duv = 2 corresponds to a just-noticeable difference. The BLED causes large color shifts for whitened objects, while the 6% VLED shows a minimal Duv.

Fig. 8
Fig. 8

Values of the constants P and Q in Eq. (7), vs. CCT. The full lines correspond to the 2° CMFs and the dashed lines to the 10° CMFs. The dashed curves at 6500 K have similar values to the full curves at 3000 K – this explains the similar values in Eqs. (2) and (5).

Fig. 9
Fig. 9

Comparison of the output spectra derived from bispectral reflectance (blue curves) and directly measured with an imaging spectrophotometer (red curves), for two whiteness standards illuminated by five lamps.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

W = Y ω cos ( η + φ ) / cos ( φ ) ( x x 0 ) ω sin ( η + φ ) / cos ( φ ) ( y y 0 )
W = Y + 800 ( x 0 x ) + 1700 ( y 0 y )
T = ζ sin ( η ) ( x x 0 ) + ζ cos ( η ) ( y y 0 )
T = 900 ( x 0 x ) 650 ( y 0 y )
W = Y = 810 ( x 0 x ) + 1700 ( y 0 y )
T = 820 ( x 0 x ) = 740 ( y 0 y )
W = Y P ( x x 0 ) Q ( y y 0 )

Metrics