Abstract

We present a robust single photon circular quantum secret sharing (QSS) scheme with phase encoding over 50 km single mode fiber network using a circular QSS protocol. Our scheme can automatically provide a perfect compensation of birefringence and remain stable for a long time. A high visibility of 99.3% is obtained. Furthermore, our scheme realizes a polarization insensitive phase modulators. The visibility of this system can be maintained perpetually without any adjustment to the system every time we test the system.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shamir, “How to share a secret,” Commun. ACM22(11), 612–613 (1979).
    [CrossRef]
  2. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59(3), 1829–1834 (1999).
    [CrossRef]
  3. R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83(3), 648–651 (1999).
    [CrossRef]
  4. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69(5), 052307 (2004).
    [CrossRef]
  5. S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett.98(2), 020503, 4 (2007).
    [CrossRef] [PubMed]
  6. Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, “Multiparty quantum secret sharing based on bell measurement,” Opt. Commun.282(17), 3647–3651 (2009).
    [CrossRef]
  7. L. Hao, C. Wang, and G. L. Long, “Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration,” Opt. Commun.284(14), 3639–3642 (2011).
    [CrossRef]
  8. X. B. Chen, S. Yang, Y. Su, and Y. X. Yang, “Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state,” Phys. Scr.86(5), 055002 (2012).
    [CrossRef]
  9. F. G. Deng, H. Y. Zhou, and G. L. Long, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A337(4-6), 329–334 (2005).
    [CrossRef]
  10. F. L. Yan, T. Gao, and Y. C. Li, “Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations,” Chin. Phys. Lett.25, 4 (2008).
  11. L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, “Multiparty quantum secret sharing of secure direct communication using single photons,” Opt. Commun.281(9), 2690–2694 (2008).
    [CrossRef]
  12. J. Bogdanski, J. Ahrens, and M. Bourennane, “Sagnac secret sharing over telecom fiber networks,” Opt. Express17(2), 1055–1063 (2009).
    [CrossRef] [PubMed]
  13. J. Bogdanski, N. Rafiei, and M. Bourennane, “Experimental quantum secret sharing using telecommunication fiber,” Phys. Rev. A78(6), 062307 (2008).
    [CrossRef]
  14. C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005).
    [CrossRef] [PubMed]
  15. J. Bogdanski, J. Ahrens, and M. Bourennane, “Single mode fiber birefringence compensation in Sagnac and “plug & play” interferometric setups,” Opt. Express17(6), 4485–4494 (2009).
    [CrossRef] [PubMed]
  16. F. G. Deng, H. Y. Zhou, and G. L. Long, “Circular quantum secret sharing,” J. Phys. Math. Gen.39(45), 14089–14099 (2006).
    [CrossRef]
  17. D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys.4, 421–4215 (2002).
  18. D. S. Bethune, M. Navarro, and W. P. Risk, “Enhanced autocompensating quantum cryptography system,” Appl. Opt.41(9), 1640–1648 (2002).
    [CrossRef] [PubMed]
  19. C. H. Bennett and G. Brassard, “Quantum Cryptography: Public key distribution and coin tossing,” in IEEE Int.Conf. on Computers, Systems, and Signal Processing, (Bangalore, 1984), 175–179.
  20. M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett.94(14), 140501 (2005).
    [CrossRef] [PubMed]
  21. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
    [CrossRef]
  22. R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008).
    [CrossRef]
  23. M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Implementation of two way Quantum Key Distribution protocol with decoy state,” Opt. Commun.285(5), 842–845 (2012).
    [CrossRef]

2012 (2)

X. B. Chen, S. Yang, Y. Su, and Y. X. Yang, “Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state,” Phys. Scr.86(5), 055002 (2012).
[CrossRef]

M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Implementation of two way Quantum Key Distribution protocol with decoy state,” Opt. Commun.285(5), 842–845 (2012).
[CrossRef]

2011 (1)

L. Hao, C. Wang, and G. L. Long, “Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration,” Opt. Commun.284(14), 3639–3642 (2011).
[CrossRef]

2009 (3)

2008 (4)

J. Bogdanski, N. Rafiei, and M. Bourennane, “Experimental quantum secret sharing using telecommunication fiber,” Phys. Rev. A78(6), 062307 (2008).
[CrossRef]

F. L. Yan, T. Gao, and Y. C. Li, “Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations,” Chin. Phys. Lett.25, 4 (2008).

L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, “Multiparty quantum secret sharing of secure direct communication using single photons,” Opt. Commun.281(9), 2690–2694 (2008).
[CrossRef]

R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008).
[CrossRef]

2007 (1)

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett.98(2), 020503, 4 (2007).
[CrossRef] [PubMed]

2006 (2)

F. G. Deng, H. Y. Zhou, and G. L. Long, “Circular quantum secret sharing,” J. Phys. Math. Gen.39(45), 14089–14099 (2006).
[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

2005 (3)

M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett.94(14), 140501 (2005).
[CrossRef] [PubMed]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005).
[CrossRef] [PubMed]

F. G. Deng, H. Y. Zhou, and G. L. Long, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A337(4-6), 329–334 (2005).
[CrossRef]

2004 (1)

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69(5), 052307 (2004).
[CrossRef]

2002 (2)

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys.4, 421–4215 (2002).

D. S. Bethune, M. Navarro, and W. P. Risk, “Enhanced autocompensating quantum cryptography system,” Appl. Opt.41(9), 1640–1648 (2002).
[CrossRef] [PubMed]

1999 (2)

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59(3), 1829–1834 (1999).
[CrossRef]

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83(3), 648–651 (1999).
[CrossRef]

1979 (1)

A. Shamir, “How to share a secret,” Commun. ACM22(11), 612–613 (1979).
[CrossRef]

Abdul Khir, M. F.

M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Implementation of two way Quantum Key Distribution protocol with decoy state,” Opt. Commun.285(5), 842–845 (2012).
[CrossRef]

Ahrens, J.

Bahari, I.

M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Implementation of two way Quantum Key Distribution protocol with decoy state,” Opt. Commun.285(5), 842–845 (2012).
[CrossRef]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public key distribution and coin tossing,” in IEEE Int.Conf. on Computers, Systems, and Signal Processing, (Bangalore, 1984), 175–179.

Berthiaume, A.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59(3), 1829–1834 (1999).
[CrossRef]

Bethune, D. S.

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys.4, 421–4215 (2002).

D. S. Bethune, M. Navarro, and W. P. Risk, “Enhanced autocompensating quantum cryptography system,” Appl. Opt.41(9), 1640–1648 (2002).
[CrossRef] [PubMed]

Bogdanski, J.

Bourennane, M.

J. Bogdanski, J. Ahrens, and M. Bourennane, “Sagnac secret sharing over telecom fiber networks,” Opt. Express17(2), 1055–1063 (2009).
[CrossRef] [PubMed]

J. Bogdanski, J. Ahrens, and M. Bourennane, “Single mode fiber birefringence compensation in Sagnac and “plug & play” interferometric setups,” Opt. Express17(6), 4485–4494 (2009).
[CrossRef] [PubMed]

J. Bogdanski, N. Rafiei, and M. Bourennane, “Experimental quantum secret sharing using telecommunication fiber,” Phys. Rev. A78(6), 062307 (2008).
[CrossRef]

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett.98(2), 020503, 4 (2007).
[CrossRef] [PubMed]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005).
[CrossRef] [PubMed]

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public key distribution and coin tossing,” in IEEE Int.Conf. on Computers, Systems, and Signal Processing, (Bangalore, 1984), 175–179.

Buzek, V.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59(3), 1829–1834 (1999).
[CrossRef]

Chen, X. B.

X. B. Chen, S. Yang, Y. Su, and Y. X. Yang, “Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state,” Phys. Scr.86(5), 055002 (2012).
[CrossRef]

Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, “Multiparty quantum secret sharing based on bell measurement,” Opt. Commun.282(17), 3647–3651 (2009).
[CrossRef]

Cleve, R.

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83(3), 648–651 (1999).
[CrossRef]

Deng, F. G.

F. G. Deng, H. Y. Zhou, and G. L. Long, “Circular quantum secret sharing,” J. Phys. Math. Gen.39(45), 14089–14099 (2006).
[CrossRef]

F. G. Deng, H. Y. Zhou, and G. L. Long, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A337(4-6), 329–334 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69(5), 052307 (2004).
[CrossRef]

Fasel, S.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

Gaertner, S.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett.98(2), 020503, 4 (2007).
[CrossRef] [PubMed]

Gao, F.

Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, “Multiparty quantum secret sharing based on bell measurement,” Opt. Commun.282(17), 3647–3651 (2009).
[CrossRef]

Gao, T.

F. L. Yan, T. Gao, and Y. C. Li, “Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations,” Chin. Phys. Lett.25, 4 (2008).

Gisin, N.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

Giuseppe, G.

R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008).
[CrossRef]

Gottesman, D.

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83(3), 648–651 (1999).
[CrossRef]

Han, L. F.

L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, “Multiparty quantum secret sharing of secure direct communication using single photons,” Opt. Commun.281(9), 2690–2694 (2008).
[CrossRef]

Hao, L.

L. Hao, C. Wang, and G. L. Long, “Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration,” Opt. Commun.284(14), 3639–3642 (2011).
[CrossRef]

Hillery, M.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59(3), 1829–1834 (1999).
[CrossRef]

Kraus, B.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

Kumar, R.

R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008).
[CrossRef]

Kurtsiefer, C.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett.98(2), 020503, 4 (2007).
[CrossRef] [PubMed]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005).
[CrossRef] [PubMed]

Li, Y. C.

F. L. Yan, T. Gao, and Y. C. Li, “Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations,” Chin. Phys. Lett.25, 4 (2008).

Liu, J.

L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, “Multiparty quantum secret sharing of secure direct communication using single photons,” Opt. Commun.281(9), 2690–2694 (2008).
[CrossRef]

Liu, Y. M.

L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, “Multiparty quantum secret sharing of secure direct communication using single photons,” Opt. Commun.281(9), 2690–2694 (2008).
[CrossRef]

Lo, H. K.

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83(3), 648–651 (1999).
[CrossRef]

Long, G. L.

L. Hao, C. Wang, and G. L. Long, “Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration,” Opt. Commun.284(14), 3639–3642 (2011).
[CrossRef]

F. G. Deng, H. Y. Zhou, and G. L. Long, “Circular quantum secret sharing,” J. Phys. Math. Gen.39(45), 14089–14099 (2006).
[CrossRef]

F. G. Deng, H. Y. Zhou, and G. L. Long, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A337(4-6), 329–334 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69(5), 052307 (2004).
[CrossRef]

Lucamarini, M.

R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008).
[CrossRef]

M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett.94(14), 140501 (2005).
[CrossRef] [PubMed]

Mancini, G.

R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008).
[CrossRef]

Mancini, S.

M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett.94(14), 140501 (2005).
[CrossRef] [PubMed]

Natali, R.

R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008).
[CrossRef]

Navarro, M.

Pan, J. W.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69(5), 052307 (2004).
[CrossRef]

Rafiei, N.

J. Bogdanski, N. Rafiei, and M. Bourennane, “Experimental quantum secret sharing using telecommunication fiber,” Phys. Rev. A78(6), 062307 (2008).
[CrossRef]

Ribordy, G.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

Risk, W. P.

D. S. Bethune, M. Navarro, and W. P. Risk, “Enhanced autocompensating quantum cryptography system,” Appl. Opt.41(9), 1640–1648 (2002).
[CrossRef] [PubMed]

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys.4, 421–4215 (2002).

Schmid, C.

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005).
[CrossRef] [PubMed]

Shaari, S.

M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Implementation of two way Quantum Key Distribution protocol with decoy state,” Opt. Commun.285(5), 842–845 (2012).
[CrossRef]

Shamir, A.

A. Shamir, “How to share a secret,” Commun. ACM22(11), 612–613 (1979).
[CrossRef]

Su, Y.

X. B. Chen, S. Yang, Y. Su, and Y. X. Yang, “Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state,” Phys. Scr.86(5), 055002 (2012).
[CrossRef]

Sun, Y.

Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, “Multiparty quantum secret sharing based on bell measurement,” Opt. Commun.282(17), 3647–3651 (2009).
[CrossRef]

Tombesi, P.

R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008).
[CrossRef]

Trojek, P.

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005).
[CrossRef] [PubMed]

Wang, C.

L. Hao, C. Wang, and G. L. Long, “Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration,” Opt. Commun.284(14), 3639–3642 (2011).
[CrossRef]

Weinfurter, H.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett.98(2), 020503, 4 (2007).
[CrossRef] [PubMed]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005).
[CrossRef] [PubMed]

Wen, Q. Y.

Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, “Multiparty quantum secret sharing based on bell measurement,” Opt. Commun.282(17), 3647–3651 (2009).
[CrossRef]

Xiao, L.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69(5), 052307 (2004).
[CrossRef]

Yan, F. L.

F. L. Yan, T. Gao, and Y. C. Li, “Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations,” Chin. Phys. Lett.25, 4 (2008).

Yang, S.

X. B. Chen, S. Yang, Y. Su, and Y. X. Yang, “Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state,” Phys. Scr.86(5), 055002 (2012).
[CrossRef]

Yang, Y. X.

X. B. Chen, S. Yang, Y. Su, and Y. X. Yang, “Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state,” Phys. Scr.86(5), 055002 (2012).
[CrossRef]

Zain, M.

M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Implementation of two way Quantum Key Distribution protocol with decoy state,” Opt. Commun.285(5), 842–845 (2012).
[CrossRef]

Zbinden, H.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

Zhang, Z. J.

L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, “Multiparty quantum secret sharing of secure direct communication using single photons,” Opt. Commun.281(9), 2690–2694 (2008).
[CrossRef]

Zhou, H. Y.

F. G. Deng, H. Y. Zhou, and G. L. Long, “Circular quantum secret sharing,” J. Phys. Math. Gen.39(45), 14089–14099 (2006).
[CrossRef]

F. G. Deng, H. Y. Zhou, and G. L. Long, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A337(4-6), 329–334 (2005).
[CrossRef]

Zhu, F. C.

Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, “Multiparty quantum secret sharing based on bell measurement,” Opt. Commun.282(17), 3647–3651 (2009).
[CrossRef]

Zukowski, M.

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Chin. Phys. Lett. (1)

F. L. Yan, T. Gao, and Y. C. Li, “Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations,” Chin. Phys. Lett.25, 4 (2008).

Commun. ACM (1)

A. Shamir, “How to share a secret,” Commun. ACM22(11), 612–613 (1979).
[CrossRef]

J. Phys. Math. Gen. (1)

F. G. Deng, H. Y. Zhou, and G. L. Long, “Circular quantum secret sharing,” J. Phys. Math. Gen.39(45), 14089–14099 (2006).
[CrossRef]

New J. Phys. (1)

D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys.4, 421–4215 (2002).

Opt. Commun. (4)

Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, “Multiparty quantum secret sharing based on bell measurement,” Opt. Commun.282(17), 3647–3651 (2009).
[CrossRef]

L. Hao, C. Wang, and G. L. Long, “Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration,” Opt. Commun.284(14), 3639–3642 (2011).
[CrossRef]

L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, “Multiparty quantum secret sharing of secure direct communication using single photons,” Opt. Commun.281(9), 2690–2694 (2008).
[CrossRef]

M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Implementation of two way Quantum Key Distribution protocol with decoy state,” Opt. Commun.285(5), 842–845 (2012).
[CrossRef]

Opt. Express (2)

Phys. Lett. A (1)

F. G. Deng, H. Y. Zhou, and G. L. Long, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A337(4-6), 329–334 (2005).
[CrossRef]

Phys. Rev. A (5)

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008).
[CrossRef]

J. Bogdanski, N. Rafiei, and M. Bourennane, “Experimental quantum secret sharing using telecommunication fiber,” Phys. Rev. A78(6), 062307 (2008).
[CrossRef]

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59(3), 1829–1834 (1999).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69(5), 052307 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett.98(2), 020503, 4 (2007).
[CrossRef] [PubMed]

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83(3), 648–651 (1999).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005).
[CrossRef] [PubMed]

M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett.94(14), 140501 (2005).
[CrossRef] [PubMed]

Phys. Scr. (1)

X. B. Chen, S. Yang, Y. Su, and Y. X. Yang, “Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state,” Phys. Scr.86(5), 055002 (2012).
[CrossRef]

Other (1)

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public key distribution and coin tossing,” in IEEE Int.Conf. on Computers, Systems, and Signal Processing, (Bangalore, 1984), 175–179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the circular secret sharing protocol.

Fig. 2
Fig. 2

Experimental setup. LD: laser diode; A: attenuator; Cir1, Cir2: circulators; PMA, PMB, PMC: phase-sensitive modulators; FM1, FM2, FM3: Faraday mirror; D1, D2: single photon detector; C: a 50 / 50 coupler; PBS1, PBS2, polarization beam splitter; PMA, PMB, PMC: phase modulator; SW1, SW2: fiber switch; CM1, CM2: the configuration of control mode; QC1; QC2: quantum channel.

Fig. 3
Fig. 3

Counts of D1、D2 vs modulation voltage of PMB.

Fig. 4
Fig. 4

Visibility for the total fiber length of 50km during 3 hours.

Tables (1)

Tables Icon

Table 1 Detection probabilities for different phase values of ϕA, ϕB and ϕC with the Deng’s protocol

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{|+z,|z,|+x,|x},
|+z=|0,           |z=|1,
|+x= 1 2 (|0+|1),        |x= 1 2 (|0|1).
U0=|00|+|11|,
U1=|01||10|.
U 1 |+z=|z,                U 1 |z=|+z,
U 1 |+x=|x,                U 1 |x=|+x.

Metrics