Abstract

We demonstrated a new method to fabricate micron-sized grooves with high aspect ratios in silicon wafers by combining femtosecond laser irradiation and oxygen-dependent acid etching. Femtosecond laser was employed to induce structure changes and incorporate oxygen into silicon, and then materials in oxygen-containing regions were etched by hydrofluoric acid (HF) solution to form grooves. The etching could be attributed to the reaction between HF and silicon oxides formed by femtosecond laser irradiation. The dependences of the aspect ratios of grooves on the laser fluence and the scanning velocity were also investigated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
    [CrossRef] [PubMed]
  2. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express20(14), 14848–14856 (2012).
    [CrossRef] [PubMed]
  3. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
    [CrossRef]
  4. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mater. Sci. Eng. Rep.39(4), 93–141 (2002).
    [CrossRef]
  5. K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
    [CrossRef]
  6. T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromaching of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process.80(8), 1717–1724 (2005).
    [CrossRef]
  7. A. Kiani, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses,” Opt. Express19(11), 10834–10842 (2011).
    [CrossRef] [PubMed]
  8. T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008).
    [CrossRef]
  9. K. Grigoras, A. J. Niskanen, and S. Franssila, “Plasma etched initial pits for electrochemically etched macroporous silicon structures,” J. Micromech. Microeng.11(4), 371–375 (2001).
    [CrossRef]
  10. P. Mukherjee, T. H. Zurbuchen, and L. J. Guo, “Fabrication and testing of freestanding Si nanogratings for UV filtration on space-based particle sensors,” Nanotechnology20(32), 325301 (2009).
    [CrossRef] [PubMed]
  11. N. Gadegaard, E. Martines, M. O. Riehle, K. Seunarine, and C. D. W. Wilkinson, “Applications of nano-patterning to tissue engineering,” Microelectron. Eng.83(4-9), 1577–1581 (2006).
    [CrossRef]
  12. W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
    [CrossRef]
  13. W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006).
    [CrossRef]
  14. R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
    [CrossRef]
  15. M. Kuttge, H. Kurz, J. G. Rivas, J. A. Sánchez-Gil, and P. H. Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101(2), 023707 (2007).
    [CrossRef]
  16. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
    [CrossRef] [PubMed]
  17. E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
    [CrossRef]
  18. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
    [CrossRef] [PubMed]
  19. Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express18(7), 6885–6890 (2010).
    [CrossRef] [PubMed]
  20. K. Kumar, K. K. C. Lee, P. R. Herman, J. Nogami, and N. P. Kherani, “Femtosecond laser direct hard mask writing for selective facile micron-scale inverted-pyramid patterning of silicon,” Appl. Phys. Lett.101(22), 222106 (2012).
    [CrossRef]
  21. Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
    [CrossRef]
  22. J. Bonse, S. Baudach, J. Krüger, W. Kauteck, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
    [CrossRef]
  23. A. Brodeur and S. L. Chin, “Ultrafast write-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16(4), 637–650 (1999).
    [CrossRef]
  24. T. Kudrius, G. Slekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D Appl. Phys.43(14), 145501 (2010).
    [CrossRef]
  25. T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys.103(5), 053104 (2008).
    [CrossRef]
  26. H. Ubara, T. Imura, and A. Hiraki, “Formation of Si-H bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment,” Solid State Commun.50(7), 673–675 (1984).
    [CrossRef]

2012 (3)

G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express20(14), 14848–14856 (2012).
[CrossRef] [PubMed]

K. Kumar, K. K. C. Lee, P. R. Herman, J. Nogami, and N. P. Kherani, “Femtosecond laser direct hard mask writing for selective facile micron-scale inverted-pyramid patterning of silicon,” Appl. Phys. Lett.101(22), 222106 (2012).
[CrossRef]

Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
[CrossRef]

2011 (1)

2010 (4)

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express18(7), 6885–6890 (2010).
[CrossRef] [PubMed]

T. Kudrius, G. Slekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D Appl. Phys.43(14), 145501 (2010).
[CrossRef]

2009 (1)

P. Mukherjee, T. H. Zurbuchen, and L. J. Guo, “Fabrication and testing of freestanding Si nanogratings for UV filtration on space-based particle sensors,” Nanotechnology20(32), 325301 (2009).
[CrossRef] [PubMed]

2008 (4)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
[CrossRef] [PubMed]

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008).
[CrossRef]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys.103(5), 053104 (2008).
[CrossRef]

2007 (1)

M. Kuttge, H. Kurz, J. G. Rivas, J. A. Sánchez-Gil, and P. H. Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101(2), 023707 (2007).
[CrossRef]

2006 (2)

N. Gadegaard, E. Martines, M. O. Riehle, K. Seunarine, and C. D. W. Wilkinson, “Applications of nano-patterning to tissue engineering,” Microelectron. Eng.83(4-9), 1577–1581 (2006).
[CrossRef]

W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006).
[CrossRef]

2005 (1)

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromaching of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process.80(8), 1717–1724 (2005).
[CrossRef]

2004 (1)

E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
[CrossRef]

2002 (3)

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mater. Sci. Eng. Rep.39(4), 93–141 (2002).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kauteck, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

2001 (1)

K. Grigoras, A. J. Niskanen, and S. Franssila, “Plasma etched initial pits for electrochemically etched macroporous silicon structures,” J. Micromech. Microeng.11(4), 371–375 (2001).
[CrossRef]

1999 (1)

1998 (1)

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

1995 (1)

R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
[CrossRef]

1984 (1)

H. Ubara, T. Imura, and A. Hiraki, “Formation of Si-H bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment,” Solid State Commun.50(7), 673–675 (1984).
[CrossRef]

Ajay, A.

W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006).
[CrossRef]

Arnal, N.

E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
[CrossRef]

Asghari, M.

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kauteck, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Bolívar, P. H.

M. Kuttge, H. Kurz, J. G. Rivas, J. A. Sánchez-Gil, and P. H. Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101(2), 023707 (2007).
[CrossRef]

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
[CrossRef] [PubMed]

Bonse, J.

J. Bonse, S. Baudach, J. Krüger, W. Kauteck, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Borowiec, A.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromaching of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process.80(8), 1717–1724 (2005).
[CrossRef]

Botton, G. A.

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys.103(5), 053104 (2008).
[CrossRef]

Brodeur, A.

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Carstensen, J.

H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mater. Sci. Eng. Rep.39(4), 93–141 (2002).
[CrossRef]

Chen, F.

Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
[CrossRef]

Chen, T.

Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
[CrossRef]

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008).
[CrossRef]

Chin, S. L.

Christophersen, M.

H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mater. Sci. Eng. Rep.39(4), 93–141 (2002).
[CrossRef]

Clerc, P.-A.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Crawford, T. H. R.

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys.103(5), 053104 (2008).
[CrossRef]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromaching of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process.80(8), 1717–1724 (2005).
[CrossRef]

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Dändliker, R.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

de Boer, M. J.

E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
[CrossRef]

de Rooij, N.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Dellmann, L.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Dong, P.

Elwenspoek, M.

E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
[CrossRef]

Feng, D.

Feng, N. N.

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Föll, H.

H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mater. Sci. Eng. Rep.39(4), 93–141 (2002).
[CrossRef]

Franssila, S.

K. Grigoras, A. J. Niskanen, and S. Franssila, “Plasma etched initial pits for electrochemically etched macroporous silicon structures,” J. Micromech. Microeng.11(4), 371–375 (2001).
[CrossRef]

Fujita, J.

Gadegaard, N.

N. Gadegaard, E. Martines, M. O. Riehle, K. Seunarine, and C. D. W. Wilkinson, “Applications of nano-patterning to tissue engineering,” Microelectron. Eng.83(4-9), 1577–1581 (2006).
[CrossRef]

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
[CrossRef] [PubMed]

Gertus, T.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
[CrossRef]

Grigoras, K.

K. Grigoras, A. J. Niskanen, and S. Franssila, “Plasma etched initial pits for electrochemically etched macroporous silicon structures,” J. Micromech. Microeng.11(4), 371–375 (2001).
[CrossRef]

Gu, M.

Guldimann, B.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Guo, L. J.

P. Mukherjee, T. H. Zurbuchen, and L. J. Guo, “Fabrication and testing of freestanding Si nanogratings for UV filtration on space-based particle sensors,” Nanotechnology20(32), 325301 (2009).
[CrossRef] [PubMed]

Hasse, G.

H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mater. Sci. Eng. Rep.39(4), 93–141 (2002).
[CrossRef]

Haugen, H. K.

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys.103(5), 053104 (2008).
[CrossRef]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromaching of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process.80(8), 1717–1724 (2005).
[CrossRef]

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
[CrossRef] [PubMed]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Herman, P. R.

K. Kumar, K. K. C. Lee, P. R. Herman, J. Nogami, and N. P. Kherani, “Femtosecond laser direct hard mask writing for selective facile micron-scale inverted-pyramid patterning of silicon,” Appl. Phys. Lett.101(22), 222106 (2012).
[CrossRef]

Herzig, H. P.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
[CrossRef] [PubMed]

Hintsche, R.

R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
[CrossRef]

Hiraki, A.

H. Ubara, T. Imura, and A. Hiraki, “Formation of Si-H bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment,” Solid State Commun.50(7), 673–675 (1984).
[CrossRef]

Hirao, K.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008).
[CrossRef]

Hou, X.

Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
[CrossRef]

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008).
[CrossRef]

Imura, T.

H. Ubara, T. Imura, and A. Hiraki, “Formation of Si-H bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment,” Solid State Commun.50(7), 673–675 (1984).
[CrossRef]

Jansen, H. V.

E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
[CrossRef]

Jelmakas, E.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
[CrossRef]

Jia, B.

Juodkazis, K.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
[CrossRef]

Juodkazis, S.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
[CrossRef]

T. Kudrius, G. Slekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D Appl. Phys.43(14), 145501 (2010).
[CrossRef]

Juodkazyte, J.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
[CrossRef]

Kalinauskas, P.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
[CrossRef]

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Kanehira, S.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008).
[CrossRef]

Kauteck, W.

J. Bonse, S. Baudach, J. Krüger, W. Kauteck, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Kee, J.

W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006).
[CrossRef]

Kherani, N. P.

K. Kumar, K. K. C. Lee, P. R. Herman, J. Nogami, and N. P. Kherani, “Femtosecond laser direct hard mask writing for selective facile micron-scale inverted-pyramid patterning of silicon,” Appl. Phys. Lett.101(22), 222106 (2012).
[CrossRef]

Kiani, A.

Krijnen, G.

E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
[CrossRef]

Krishnamoorthy, A. V.

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kauteck, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Kruse, Ch.

R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
[CrossRef]

Kudrius, T.

T. Kudrius, G. Slekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D Appl. Phys.43(14), 145501 (2010).
[CrossRef]

Kumar, K.

K. Kumar, K. K. C. Lee, P. R. Herman, J. Nogami, and N. P. Kherani, “Femtosecond laser direct hard mask writing for selective facile micron-scale inverted-pyramid patterning of silicon,” Appl. Phys. Lett.101(22), 222106 (2012).
[CrossRef]

Kurz, H.

M. Kuttge, H. Kurz, J. G. Rivas, J. A. Sánchez-Gil, and P. H. Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101(2), 023707 (2007).
[CrossRef]

Kuttge, M.

M. Kuttge, H. Kurz, J. G. Rivas, J. A. Sánchez-Gil, and P. H. Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101(2), 023707 (2007).
[CrossRef]

Lee, K. K. C.

K. Kumar, K. K. C. Lee, P. R. Herman, J. Nogami, and N. P. Kherani, “Femtosecond laser direct hard mask writing for selective facile micron-scale inverted-pyramid patterning of silicon,” Appl. Phys. Lett.101(22), 222106 (2012).
[CrossRef]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kauteck, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

Liang, H.

Lin, H.

Lisec, T.

R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
[CrossRef]

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
[CrossRef] [PubMed]

Ma, Y.

Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
[CrossRef]

Manzardo, O.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Martines, E.

N. Gadegaard, E. Martines, M. O. Riehle, K. Seunarine, and C. D. W. Wilkinson, “Applications of nano-patterning to tissue engineering,” Microelectron. Eng.83(4-9), 1577–1581 (2006).
[CrossRef]

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
[CrossRef] [PubMed]

Marxer, C. R.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Mazur, E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Misawa, H.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
[CrossRef]

Miura, K.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008).
[CrossRef]

Miyaji, G.

Miyazaki, K.

Mukherjee, P.

P. Mukherjee, T. H. Zurbuchen, and L. J. Guo, “Fabrication and testing of freestanding Si nanogratings for UV filtration on space-based particle sensors,” Nanotechnology20(32), 325301 (2009).
[CrossRef] [PubMed]

Niskanen, A. J.

K. Grigoras, A. J. Niskanen, and S. Franssila, “Plasma etched initial pits for electrochemically etched macroporous silicon structures,” J. Micromech. Microeng.11(4), 371–375 (2001).
[CrossRef]

Noell, W.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Nogami, J.

K. Kumar, K. K. C. Lee, P. R. Herman, J. Nogami, and N. P. Kherani, “Femtosecond laser direct hard mask writing for selective facile micron-scale inverted-pyramid patterning of silicon,” Appl. Phys. Lett.101(22), 222106 (2012).
[CrossRef]

Ong, W.

W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006).
[CrossRef]

Paeschke, M.

R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
[CrossRef]

Puech, M.

E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
[CrossRef]

Qian, W.

Ranganathan, N.

W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006).
[CrossRef]

Riehle, M. O.

N. Gadegaard, E. Martines, M. O. Riehle, K. Seunarine, and C. D. W. Wilkinson, “Applications of nano-patterning to tissue engineering,” Microelectron. Eng.83(4-9), 1577–1581 (2006).
[CrossRef]

Rivas, J. G.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
[CrossRef] [PubMed]

M. Kuttge, H. Kurz, J. G. Rivas, J. A. Sánchez-Gil, and P. H. Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101(2), 023707 (2007).
[CrossRef]

Sánchez-Gil, J. A.

M. Kuttge, H. Kurz, J. G. Rivas, J. A. Sánchez-Gil, and P. H. Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101(2), 023707 (2007).
[CrossRef]

Sarajlic, E.

E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
[CrossRef]

Schnakenberg, U.

R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
[CrossRef]

Seunarine, K.

N. Gadegaard, E. Martines, M. O. Riehle, K. Seunarine, and C. D. W. Wilkinson, “Applications of nano-patterning to tissue engineering,” Microelectron. Eng.83(4-9), 1577–1581 (2006).
[CrossRef]

Shafiiha, R.

Shen, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Shi, H.

Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
[CrossRef]

Si, J.

Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
[CrossRef]

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008).
[CrossRef]

Slekys, G.

T. Kudrius, G. Slekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D Appl. Phys.43(14), 145501 (2010).
[CrossRef]

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Tan, B.

Tang, K.

W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006).
[CrossRef]

Ubara, H.

H. Ubara, T. Imura, and A. Hiraki, “Formation of Si-H bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment,” Solid State Commun.50(7), 673–675 (1984).
[CrossRef]

Uhlig, A.

R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
[CrossRef]

Venkatakrishnan, K.

Venkataramanan, V.

Wagner, B.

R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
[CrossRef]

Weible, K. J.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

Wilkinson, C. D. W.

N. Gadegaard, E. Martines, M. O. Riehle, K. Seunarine, and C. D. W. Wilkinson, “Applications of nano-patterning to tissue engineering,” Microelectron. Eng.83(4-9), 1577–1581 (2006).
[CrossRef]

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Xu, L.

Yamanaka, J.

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys.103(5), 053104 (2008).
[CrossRef]

Yan, F.

Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
[CrossRef]

Yobas, L.

W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006).
[CrossRef]

Yoshifuji, T.

Zhang, K.

Zhang, Q.

Zheng, X.

Zurbuchen, T. H.

P. Mukherjee, T. H. Zurbuchen, and L. J. Guo, “Fabrication and testing of freestanding Si nanogratings for UV filtration on space-based particle sensors,” Nanotechnology20(32), 325301 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008).
[CrossRef]

W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006).
[CrossRef]

K. Kumar, K. K. C. Lee, P. R. Herman, J. Nogami, and N. P. Kherani, “Femtosecond laser direct hard mask writing for selective facile micron-scale inverted-pyramid patterning of silicon,” Appl. Phys. Lett.101(22), 222106 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

J. Bonse, S. Baudach, J. Krüger, W. Kauteck, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002).
[CrossRef]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromaching of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process.80(8), 1717–1724 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002).
[CrossRef]

J. Appl. Phys. (2)

T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys.103(5), 053104 (2008).
[CrossRef]

M. Kuttge, H. Kurz, J. G. Rivas, J. A. Sánchez-Gil, and P. H. Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101(2), 023707 (2007).
[CrossRef]

J. Micromech. Microeng. (2)

E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004).
[CrossRef]

K. Grigoras, A. J. Niskanen, and S. Franssila, “Plasma etched initial pits for electrochemically etched macroporous silicon structures,” J. Micromech. Microeng.11(4), 371–375 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. Kudrius, G. Slekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D Appl. Phys.43(14), 145501 (2010).
[CrossRef]

J. Solid State Electrochem. (1)

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mater. Sci. Eng. Rep.39(4), 93–141 (2002).
[CrossRef]

Microelectron. Eng. (1)

N. Gadegaard, E. Martines, M. O. Riehle, K. Seunarine, and C. D. W. Wilkinson, “Applications of nano-patterning to tissue engineering,” Microelectron. Eng.83(4-9), 1577–1581 (2006).
[CrossRef]

Nano Lett. (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

P. Mukherjee, T. H. Zurbuchen, and L. J. Guo, “Fabrication and testing of freestanding Si nanogratings for UV filtration on space-based particle sensors,” Nanotechnology20(32), 325301 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012).
[CrossRef]

Opt. Express (4)

Phys. Rev. Lett. (1)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995).
[CrossRef]

Solid State Commun. (1)

H. Ubara, T. Imura, and A. Hiraki, “Formation of Si-H bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment,” Solid State Commun.50(7), 673–675 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two-step schematic diagram of micron-sized grooves fabrication.

Fig. 2
Fig. 2

Cross-sectional SEM images of LISC regions (a) before and (c) after chemical etching. (b) and (d) were the detail morphologies of (a) and (c).

Fig. 3
Fig. 3

Element analysis of (a) LISC regions by graph (c) the horizontal orientation line1 and line 2 and graph (d) the vertical orientation line 3. The vertical axis of two graphs is the atomic percentage of oxygen. (b) showed the EDX analyzing points 1 to 6 of one groove.

Fig. 4
Fig. 4

Dependence of the aspect ratios of grooves on the (a) laser fluence and (b) scanning velocity when the laser beam was focused onto the upper surface of the silicon. For (a) the laser scanning velocity was 5 μm/s and for (b) the fluence is 11.14 J/cm2.

Metrics