Abstract

Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated optics, we assemble the central components of a spectral-domain OCT system on a silicon chip. The spectrometer comprises an arrayed-waveguide grating with 136-nm free spectral range and 0.21-nm wavelength resolution. The beam splitter is realized by a non-uniform adiabatic coupler with its 3-dB splitting ratio being nearly constant over 150 nm. With this device whose overall volume is 0.36 cm3 we demonstrate high-quality in vivo imaging in human skin with 1.4-mm penetration depth, 7.5-µm axial resolution, and a signal-to-noise ratio of 74 dB. Considering the reasonable performance of this early OCT on-a-chip system and the anticipated improvements in this technology, a completely different range of devices and new fields of applications may become feasible.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F.  Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
    [CrossRef] [PubMed]
  3. D.  Culemann, A.  Knuettel, E.  Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 6(5), 730–734 (2000).
    [CrossRef]
  4. E.  Margallo-Balbás, M.  Geljon, G.  Pandraud, P. J.  French, “Miniature 10 kHz thermo-optic delay line in silicon,” Opt. Lett. 35(23), 4027–4029 (2010).
    [CrossRef] [PubMed]
  5. G.  Yurtsever, P.  Dumon, W.  Bogaerts, R.  Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75541B (2010).
    [CrossRef]
  6. M. K.  Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
    [CrossRef]
  7. D.  Choi, H.  Hiro-Oka, H.  Furukawa, R.  Yoshimura, M.  Nakanishi, K.  Shimizu, K.  Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett. 33(12), 1318–1320 (2008).
    [CrossRef] [PubMed]
  8. D. H.  Choi, H.  Hiro-Oka, K.  Shimizu, K.  Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
    [CrossRef] [PubMed]
  9. Y.  Jiao, B. W.  Tilma, J.  Kotani, R.  Nötzel, M. K.  Smit, S.  He, E. A.  Bente, “InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm,” Opt. Express 20(4), 3675–3692 (2012).
    [CrossRef] [PubMed]
  10. B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
    [CrossRef]
  11. B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
    [CrossRef]
  12. V. D.  Nguyen, B. I.  Akca, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, T. G.  van Leeuwen, J.  Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett. 36(7), 1293–1295 (2011).
    [CrossRef] [PubMed]
  13. B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).
  14. V. D.  Nguyen, N.  Weiss, W.  Beeker, M.  Hoekman, A.  Leinse, R. G.  Heideman, T. G.  van Leeuwen, J.  Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett. 37(23), 4820–4822 (2012).
    [CrossRef] [PubMed]
  15. K.  Wörhoff, E. J.  Klein, M. G.  Hussein, A.  Driessen, “Silicon oxynitride based photonics,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2008), pp. 266–269.
  16. W. H.  Louisell, “Analysis of the single tapered mode coupler,” Bell Syst. Tech. J. 33, 853–870 (1955).
  17. M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [CrossRef]
  18. C. M.  Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
    [CrossRef]
  19. H.  Takahashi, S.  Suzuki, K.  Kato, I.  Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
    [CrossRef]
  20. Z.  Hu, Y.  Pan, A. M.  Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt. 46(35), 8499–8505 (2007).
    [CrossRef] [PubMed]
  21. K.  Takada, H.  Yamada, K.  Okamoto, “320-channel multiplexer consisting of a 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett. 35(10), 824–826 (1999).
    [CrossRef]
  22. B. I.  Akca, C. R.  Doerr, G.  Sengo, K.  Wörhoff, M.  Pollnau, R. M.  de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
    [CrossRef] [PubMed]
  23. B.  Hofer, B.  Povazay, B.  Hermann, A.  Unterhuber, G.  Matz, W.  Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
    [CrossRef] [PubMed]
  24. E.  Fuchs, S.  Raghavan, “Getting under the skin of epidermal morphogenesis,” Nat. Rev. Genet. 3(3), 199–209 (2002).
    [CrossRef] [PubMed]
  25. A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
    [CrossRef] [PubMed]
  26. J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, Berlin, New York, 2008), pp. 47–72.
  27. M. M.  Spühler, B. J.  Offrein, G.  Bona, R.  Germann, I.  Massarek, D.  Erni, “A very short planar silica spot-size converter using a nonperiodic segmented waveguide,” J. Lightwave Technol. 16(9), 1680–1685 (1998).
    [CrossRef]
  28. O.  Mitomi, K.  Kasaya, H.  Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30(8), 1787–1793 (1994).
    [CrossRef]
  29. A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
    [CrossRef]

2012 (7)

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).

Y.  Jiao, B. W.  Tilma, J.  Kotani, R.  Nötzel, M. K.  Smit, S.  He, E. A.  Bente, “InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm,” Opt. Express 20(4), 3675–3692 (2012).
[CrossRef] [PubMed]

B. I.  Akca, C. R.  Doerr, G.  Sengo, K.  Wörhoff, M.  Pollnau, R. M.  de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
[CrossRef] [PubMed]

D. H.  Choi, H.  Hiro-Oka, K.  Shimizu, K.  Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
[CrossRef] [PubMed]

V. D.  Nguyen, N.  Weiss, W.  Beeker, M.  Hoekman, A.  Leinse, R. G.  Heideman, T. G.  van Leeuwen, J.  Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett. 37(23), 4820–4822 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (4)

E.  Margallo-Balbás, M.  Geljon, G.  Pandraud, P. J.  French, “Miniature 10 kHz thermo-optic delay line in silicon,” Opt. Lett. 35(23), 4027–4029 (2010).
[CrossRef] [PubMed]

A. F.  Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[CrossRef] [PubMed]

G.  Yurtsever, P.  Dumon, W.  Bogaerts, R.  Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75541B (2010).
[CrossRef]

A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2002 (1)

E.  Fuchs, S.  Raghavan, “Getting under the skin of epidermal morphogenesis,” Nat. Rev. Genet. 3(3), 199–209 (2002).
[CrossRef] [PubMed]

2000 (2)

D.  Culemann, A.  Knuettel, E.  Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 6(5), 730–734 (2000).
[CrossRef]

A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

1999 (1)

K.  Takada, H.  Yamada, K.  Okamoto, “320-channel multiplexer consisting of a 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett. 35(10), 824–826 (1999).
[CrossRef]

1998 (1)

1996 (1)

M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

1994 (1)

O.  Mitomi, K.  Kasaya, H.  Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30(8), 1787–1793 (1994).
[CrossRef]

1991 (1)

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

H.  Takahashi, S.  Suzuki, K.  Kato, I.  Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

1988 (1)

M. K.  Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

1955 (1)

W. H.  Louisell, “Analysis of the single tapered mode coupler,” Bell Syst. Tech. J. 33, 853–870 (1955).

1916 (1)

C. M.  Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
[CrossRef]

Akca, B. I.

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).

B. I.  Akca, C. R.  Doerr, G.  Sengo, K.  Wörhoff, M.  Pollnau, R. M.  de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
[CrossRef] [PubMed]

V. D.  Nguyen, B. I.  Akca, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, T. G.  van Leeuwen, J.  Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett. 36(7), 1293–1295 (2011).
[CrossRef] [PubMed]

Alex, A.

A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Ambrosius, H. P. M. M.

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Baets, R.

G.  Yurtsever, P.  Dumon, W.  Bogaerts, R.  Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75541B (2010).
[CrossRef]

Beeker, W.

Bente, E. A.

Bente, E. A. J. M.

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Binder, S.

A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Bogaerts, W.

G.  Yurtsever, P.  Dumon, W.  Bogaerts, R.  Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75541B (2010).
[CrossRef]

Bona, G.

Chang, L.

B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).

Chang, W.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Choi, D.

Choi, D. H.

Culemann, D.

D.  Culemann, A.  Knuettel, E.  Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 6(5), 730–734 (2000).
[CrossRef]

de Ridder, R. M.

B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

B. I.  Akca, C. R.  Doerr, G.  Sengo, K.  Wörhoff, M.  Pollnau, R. M.  de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
[CrossRef] [PubMed]

V. D.  Nguyen, B. I.  Akca, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, T. G.  van Leeuwen, J.  Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett. 36(7), 1293–1295 (2011).
[CrossRef] [PubMed]

Doerr, C. R.

Drexler, W.

A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

B.  Hofer, B.  Povazay, B.  Hermann, A.  Unterhuber, G.  Matz, W.  Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
[CrossRef] [PubMed]

Driessen, A.

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

K.  Wörhoff, E. J.  Klein, M. G.  Hussein, A.  Driessen, “Silicon oxynitride based photonics,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2008), pp. 266–269.

Dumon, P.

G.  Yurtsever, P.  Dumon, W.  Bogaerts, R.  Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75541B (2010).
[CrossRef]

Erni, D.

Fercher, A. F.

A. F.  Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[CrossRef] [PubMed]

Flotte, T.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

French, P. J.

Fuchs, E.

E.  Fuchs, S.  Raghavan, “Getting under the skin of epidermal morphogenesis,” Nat. Rev. Genet. 3(3), 199–209 (2002).
[CrossRef] [PubMed]

Fujimoto, J. G.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Furukawa, H.

Geljon, M.

Germann, R.

Glittenberg, C.

A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Gregory, K.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

He, S.

Hee, M. R.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heideman, R. G.

Hermann, B.

Himeno, A.

A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Hiro-Oka, H.

Hoekman, M.

Hofer, B.

A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

B.  Hofer, B.  Povazay, B.  Hermann, A.  Unterhuber, G.  Matz, W.  Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
[CrossRef] [PubMed]

Hu, Z.

Huang, D.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hussein, M. G.

K.  Wörhoff, E. J.  Klein, M. G.  Hussein, A.  Driessen, “Silicon oxynitride based photonics,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2008), pp. 266–269.

Ismail, N.

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

Itoh, M.

A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Jiao, Y.

Y.  Jiao, B. W.  Tilma, J.  Kotani, R.  Nötzel, M. K.  Smit, S.  He, E. A.  Bente, “InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm,” Opt. Express 20(4), 3675–3692 (2012).
[CrossRef] [PubMed]

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Kalkman, J.

Kaneko, A.

A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Kasaya, K.

O.  Mitomi, K.  Kasaya, H.  Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30(8), 1787–1793 (1994).
[CrossRef]

Kato, K.

H.  Takahashi, S.  Suzuki, K.  Kato, I.  Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Klein, E. J.

K.  Wörhoff, E. J.  Klein, M. G.  Hussein, A.  Driessen, “Silicon oxynitride based photonics,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2008), pp. 266–269.

Knuettel, A.

D.  Culemann, A.  Knuettel, E.  Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 6(5), 730–734 (2000).
[CrossRef]

Kotani, J.

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Y.  Jiao, B. W.  Tilma, J.  Kotani, R.  Nötzel, M. K.  Smit, S.  He, E. A.  Bente, “InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm,” Opt. Express 20(4), 3675–3692 (2012).
[CrossRef] [PubMed]

Leijtens, X. J. M.

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Leinse, A.

Lin, C. P.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Louisell, W. H.

W. H.  Louisell, “Analysis of the single tapered mode coupler,” Bell Syst. Tech. J. 33, 853–870 (1955).

Margallo-Balbás, E.

Massarek, I.

Matz, G.

Mitomi, O.

O.  Mitomi, K.  Kasaya, H.  Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30(8), 1787–1793 (1994).
[CrossRef]

Miyazawa, H.

O.  Mitomi, K.  Kasaya, H.  Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30(8), 1787–1793 (1994).
[CrossRef]

Nakanishi, M.

Nguyen, V. D.

Nishi, I.

H.  Takahashi, S.  Suzuki, K.  Kato, I.  Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Nötzel, R.

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Y.  Jiao, B. W.  Tilma, J.  Kotani, R.  Nötzel, M. K.  Smit, S.  He, E. A.  Bente, “InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm,” Opt. Express 20(4), 3675–3692 (2012).
[CrossRef] [PubMed]

Offrein, B. J.

Ohbayashi, K.

Ohmori, Y.

A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Okamoto, K.

A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

K.  Takada, H.  Yamada, K.  Okamoto, “320-channel multiplexer consisting of a 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett. 35(10), 824–826 (1999).
[CrossRef]

Pan, Y.

Pandraud, G.

Pollnau, M.

B. I.  Akca, C. R.  Doerr, G.  Sengo, K.  Wörhoff, M.  Pollnau, R. M.  de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
[CrossRef] [PubMed]

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).

V. D.  Nguyen, B. I.  Akca, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, T. G.  van Leeuwen, J.  Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett. 36(7), 1293–1295 (2011).
[CrossRef] [PubMed]

Popov, S.

A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Povazay, B.

A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

B.  Hofer, B.  Povazay, B.  Hermann, A.  Unterhuber, G.  Matz, W.  Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Raghavan, S.

E.  Fuchs, S.  Raghavan, “Getting under the skin of epidermal morphogenesis,” Nat. Rev. Genet. 3(3), 199–209 (2002).
[CrossRef] [PubMed]

Rollins, A. M.

Schuman, J. S.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sengo, G.

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).

B. I.  Akca, C. R.  Doerr, G.  Sengo, K.  Wörhoff, M.  Pollnau, R. M.  de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
[CrossRef] [PubMed]

Shimizu, K.

Smalbrugge, E.

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Smit, M. K.

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Y.  Jiao, B. W.  Tilma, J.  Kotani, R.  Nötzel, M. K.  Smit, S.  He, E. A.  Bente, “InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm,” Opt. Express 20(4), 3675–3692 (2012).
[CrossRef] [PubMed]

M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

M. K.  Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

Sparrow, C. M.

C. M.  Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
[CrossRef]

Spühler, M. M.

Stinson, W. G.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sugita, A.

A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Sun, F.

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

Suzuki, S.

H.  Takahashi, S.  Suzuki, K.  Kato, I.  Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Swanson, E. A.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Takada, K.

K.  Takada, H.  Yamada, K.  Okamoto, “320-channel multiplexer consisting of a 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett. 35(10), 824–826 (1999).
[CrossRef]

Takahashi, H.

H.  Takahashi, S.  Suzuki, K.  Kato, I.  Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Thijs, P. J.

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Tilma, B. W.

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

Y.  Jiao, B. W.  Tilma, J.  Kotani, R.  Nötzel, M. K.  Smit, S.  He, E. A.  Bente, “InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm,” Opt. Express 20(4), 3675–3692 (2012).
[CrossRef] [PubMed]

Unterhuber, A.

van Dam, C.

M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

van Leeuwen, T. G.

Voges, E.

D.  Culemann, A.  Knuettel, E.  Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 6(5), 730–734 (2000).
[CrossRef]

Weiss, N.

Wörhoff, K.

B. I.  Akca, C. R.  Doerr, G.  Sengo, K.  Wörhoff, M.  Pollnau, R. M.  de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
[CrossRef] [PubMed]

B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

V. D.  Nguyen, B. I.  Akca, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, T. G.  van Leeuwen, J.  Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett. 36(7), 1293–1295 (2011).
[CrossRef] [PubMed]

K.  Wörhoff, E. J.  Klein, M. G.  Hussein, A.  Driessen, “Silicon oxynitride based photonics,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2008), pp. 266–269.

Yamada, H.

K.  Takada, H.  Yamada, K.  Okamoto, “320-channel multiplexer consisting of a 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett. 35(10), 824–826 (1999).
[CrossRef]

Yoshimura, R.

Yurtsever, G.

G.  Yurtsever, P.  Dumon, W.  Bogaerts, R.  Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75541B (2010).
[CrossRef]

Appl. Opt. (1)

Astrophys. J. (1)

C. M.  Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916).
[CrossRef]

Bell Syst. Tech. J. (1)

W. H.  Louisell, “Analysis of the single tapered mode coupler,” Bell Syst. Tech. J. 33, 853–870 (1955).

Biomed. Opt. Express (1)

Electron. Lett. (3)

H.  Takahashi, S.  Suzuki, K.  Kato, I.  Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

K.  Takada, H.  Yamada, K.  Okamoto, “320-channel multiplexer consisting of a 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett. 35(10), 824–826 (1999).
[CrossRef]

M. K.  Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[CrossRef]

O.  Mitomi, K.  Kasaya, H.  Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30(8), 1787–1793 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[CrossRef]

D.  Culemann, A.  Knuettel, E.  Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 6(5), 730–734 (2000).
[CrossRef]

M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).

A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

J. Biomed. Opt. (1)

A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nat. Rev. Genet. (1)

E.  Fuchs, S.  Raghavan, “Getting under the skin of epidermal morphogenesis,” Nat. Rev. Genet. 3(3), 199–209 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

G.  Yurtsever, P.  Dumon, W.  Bogaerts, R.  Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75541B (2010).
[CrossRef]

Science (1)

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Z. Med. Phys. (1)

A. F.  Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[CrossRef] [PubMed]

Other (2)

K.  Wörhoff, E. J.  Klein, M. G.  Hussein, A.  Driessen, “Silicon oxynitride based photonics,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2008), pp. 266–269.

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, Berlin, New York, 2008), pp. 47–72.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the partially integrated SD-OCT system. (a) The complete SD-OCT set-up comprising a broadband light source, the microchip with its optical circuitry consisting of a broadband beam splitter and the spectrometer (purple plate, magnified for viewing purposes), line-scan camera, and reference and sample arms, the latter including a scanner unit. (b) Details of the integrated broadband beam splitter, a 3-dB non-uniform adiabatic coupler with specific waveguide widths of w1 = 2 µm, w2 = 1.8 µm, w3 = 1.6 µm, a waveguide separation of d = 0.8 µm, and a taper length of Ltaper = 3.5 mm. (c) A conventional AWG which, in contrast to our device, includes output channels. (d) Scanning electron microscope image of the arrayed-waveguide section of the AWG before top-cladding deposition. (e) Optical microscope image of linear tapers at the waveguide/FPR interface of the fabricated AWG spectrometer.

Fig. 2
Fig. 2

Wavelength dependence of the integrated beam splitter. (a) Simulated transmission of a uniform, i.e., intrinsically highly wavelength-dependent coupler (dashed lines) and the non-uniform adiabatic coupler in the ideal case, i.e., without fabrication imperfections, and including incomplete etching of the SiON layer in the gap region. (b) Measured transmission of the fabricated non-uniform adiabatic coupler. An oscillatory behavior can be observed, with an excess loss of 2.5 dB.

Fig. 3
Fig. 3

Images of glabrous skin at interdigital joint taken using the partially integrated SD-OCT system. En face section at (a) the deeper epidermal layers featuring the living epidermis on top of the dermal papillae (yellow), (b) rete subpapillare where fibrous components dominate the basis of the dermal papillae (orange) and (c) the deeper dermis with vessels (violet). (d) Cross-section as indicated by the dotted white line in the en face sections. Colored indicators depict the location of the en face views.

Fig. 4
Fig. 4

Images of pigmented thin skin taken using the partially integrated SD-OCT system. (a-c) Cross-sectional views of a three-dimensional volume obtained at a location with increased melanin concentration. (f-h) En face views at different depths. (e) Three-dimensional volume-rendered representation of OCT image data. The yellow markers delineate the corresponding positions of the en face views.

Fig. 5
Fig. 5

Cross-sectional tomograms of the scar tissue at the index finger. Images taken with 32 × average using (a) the 1300-nm custom-designed SD-OCT system and (b) the partially integrated SD-OCT system. For the latter image, the zero delay is offset (ZD-offset) by ~800 μm toward the region of interest to compensate for ~10 dB loss caused by signal roll-off. (c) The signal roll-off curves of the partially integrated OCT system using an AWG spectrometer (blue dashed line) and the custom-designed OCT system using a conventional spectrometer (black solid line). The resulting signal roll-off of the partially integrated OCT system after compensation is given by the blue solid line.

Metrics