Abstract

The ultrafast dynamics of the second singlet electronically excited state (S2) in ethylbenzene has been studied by femtosecond time-resolved photoelectron imaging. The time evolution of the photoelectron signal can be well described by a biexponential decay: a rapid relaxation pathway with a time constant of 60 ( ± 9) fs and a longer-lived channel on a timescale of 2.58 ( ± 0.22) ps. The rapid relaxation is ascribed to the ultrafast internal conversion from the S2 state to the vibrationally hot S1 state. This internal conversion process has been observed in real time. The slow photoelectron signal reflects the depopulation of secondarily populated high vibronic S1 state.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys.69(6), 1897–2003 (2006).
    [CrossRef]
  2. A. H. Zewail, “Laser Femtochemistry,” Science242(4886), 1645–1653 (1988).
    [CrossRef] [PubMed]
  3. A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers,” Angew. Chem. Int. Ed. Engl.39(15), 2586–2631 (2000).
    [CrossRef] [PubMed]
  4. A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc.97(8), 1993–2005 (1975).
    [CrossRef]
  5. A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc.97(8), 2005–2013 (1975).
    [CrossRef]
  6. E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler High-Resolution Spectra of benzene: Anomalous Results in the “Channel Three” Region,” J. Phys. Chem.86(25), 4847–4850 (1982).
    [CrossRef]
  7. W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
    [CrossRef]
  8. M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B71(3), 431–437 (2000).
    [CrossRef]
  9. C. Riehn, A. Weichert, and B. Brutschy, “Probing benzene in a new way: high-resolution time-resolved rotational spectroscopy,” J. Phys. Chem. A105(23), 5618–5621 (2001).
    [CrossRef]
  10. G. A. Worth, R. E. Carley, and H. H. Fielding, “Using photoelectron spectroscopy to unravel the excited state dynamics of benzene,” Chem. Phys.338(2-3), 220–227 (2007).
    [CrossRef]
  11. Y. I. Suzuki, T. Horio, T. Fuji, and T. Suzuki, “Time-resolved photoelectron imaging of S2 → S1 internal conversion in benzene and toluene,” J. Chem. Phys.134(18), 184313 (2011).
    [CrossRef] [PubMed]
  12. X. Qiu, C. Qin, J. Wang, Y. Tang, and B. Zhang, “Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states,” Phys. Rev. A86(3), 032505 (2012).
    [CrossRef]
  13. P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A105(23), 5613–5617 (2001).
    [CrossRef]
  14. C. D. Keefe and E. Brand, “Optical constants and vibrational analysis of ethylbenzene between 4000 and 450 cm−1 at 25 °C,”J. Mol. Strut.691(1-3), 181–189 (2004).
    [CrossRef]
  15. C. L. Huang, J. C. Jiang, S. H. Lin, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene at 248 nm,” J. Chem. Phys.116(18), 7779–7782 (2002).
    [CrossRef]
  16. C. L. Huang, J. C. Jiang, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene and n-propylbenzene in a molecular beam,” J. Chem. Phys.117(15), 7034–7040 (2002).
    [CrossRef]
  17. A. T. J. B. Eppink and D. H. Parker, “Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen,” Rev. Sci. Instrum.68(9), 3477–3488 (1997).
    [CrossRef]
  18. A. M. Walser, M. Meisinger, P. P. Radi, T. Gerber, and G. Knopp, “Resonant UV-fs-TCFWM spectroscopy on formaldehyde,” Phys. Chem. Chem. Phys.11(38), 8456–8466 (2009).
    [CrossRef] [PubMed]
  19. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum.73(7), 2634–2642 (2002).
    [CrossRef]
  20. V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature401(6748), 52–54 (1999).
    [CrossRef]
  21. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev.104(4), 1719–1758 (2004).
    [CrossRef] [PubMed]
  22. F. Gunzer and J. Grotemeyer, “New features in the mass analyzed threshold ionization (MATI) spectra of alkyl benzenes,” Phys. Chem. Chem. Phys.4(24), 5966–5972 (2002).
    [CrossRef]
  23. L. Klasinc, B. Kovac, and H. Gusten, “Photoelectron spectra of acenes. Electronic structure and substituent effects,” Pure Appl. Chem.55(2), 289–298 (1983).
    [CrossRef]
  24. Y. Liu, B. Tang, H. Shen, S. Zhang, and B. Zhang, “Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging,” Opt. Express18(6), 5791–5801 (2010).
    [CrossRef] [PubMed]
  25. T. Horio, T. Fuji, Y. I. Suzuki, and T. Suzuki, “Probing Ultrafast Internal Conversion through Conical Intersection via Time-Energy Map of Photoelectron Angular Anisotropy,” J. Am. Chem. Soc.131(30), 10392–10393 (2009).
    [CrossRef] [PubMed]
  26. C. N. Yang, “On the angular distribution in nuclear reactions and coincidence measurements,” Phys. Rev.74(7), 764–772 (1948).
    [CrossRef]
  27. T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
    [CrossRef] [PubMed]

2013 (1)

T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
[CrossRef] [PubMed]

2012 (1)

X. Qiu, C. Qin, J. Wang, Y. Tang, and B. Zhang, “Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states,” Phys. Rev. A86(3), 032505 (2012).
[CrossRef]

2011 (1)

Y. I. Suzuki, T. Horio, T. Fuji, and T. Suzuki, “Time-resolved photoelectron imaging of S2 → S1 internal conversion in benzene and toluene,” J. Chem. Phys.134(18), 184313 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

T. Horio, T. Fuji, Y. I. Suzuki, and T. Suzuki, “Probing Ultrafast Internal Conversion through Conical Intersection via Time-Energy Map of Photoelectron Angular Anisotropy,” J. Am. Chem. Soc.131(30), 10392–10393 (2009).
[CrossRef] [PubMed]

A. M. Walser, M. Meisinger, P. P. Radi, T. Gerber, and G. Knopp, “Resonant UV-fs-TCFWM spectroscopy on formaldehyde,” Phys. Chem. Chem. Phys.11(38), 8456–8466 (2009).
[CrossRef] [PubMed]

2007 (1)

G. A. Worth, R. E. Carley, and H. H. Fielding, “Using photoelectron spectroscopy to unravel the excited state dynamics of benzene,” Chem. Phys.338(2-3), 220–227 (2007).
[CrossRef]

2006 (1)

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys.69(6), 1897–2003 (2006).
[CrossRef]

2004 (2)

C. D. Keefe and E. Brand, “Optical constants and vibrational analysis of ethylbenzene between 4000 and 450 cm−1 at 25 °C,”J. Mol. Strut.691(1-3), 181–189 (2004).
[CrossRef]

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev.104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

2002 (4)

F. Gunzer and J. Grotemeyer, “New features in the mass analyzed threshold ionization (MATI) spectra of alkyl benzenes,” Phys. Chem. Chem. Phys.4(24), 5966–5972 (2002).
[CrossRef]

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum.73(7), 2634–2642 (2002).
[CrossRef]

C. L. Huang, J. C. Jiang, S. H. Lin, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene at 248 nm,” J. Chem. Phys.116(18), 7779–7782 (2002).
[CrossRef]

C. L. Huang, J. C. Jiang, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene and n-propylbenzene in a molecular beam,” J. Chem. Phys.117(15), 7034–7040 (2002).
[CrossRef]

2001 (2)

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A105(23), 5613–5617 (2001).
[CrossRef]

C. Riehn, A. Weichert, and B. Brutschy, “Probing benzene in a new way: high-resolution time-resolved rotational spectroscopy,” J. Phys. Chem. A105(23), 5618–5621 (2001).
[CrossRef]

2000 (2)

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B71(3), 431–437 (2000).
[CrossRef]

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers,” Angew. Chem. Int. Ed. Engl.39(15), 2586–2631 (2000).
[CrossRef] [PubMed]

1999 (1)

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature401(6748), 52–54 (1999).
[CrossRef]

1997 (1)

A. T. J. B. Eppink and D. H. Parker, “Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen,” Rev. Sci. Instrum.68(9), 3477–3488 (1997).
[CrossRef]

1988 (1)

A. H. Zewail, “Laser Femtochemistry,” Science242(4886), 1645–1653 (1988).
[CrossRef] [PubMed]

1983 (1)

L. Klasinc, B. Kovac, and H. Gusten, “Photoelectron spectra of acenes. Electronic structure and substituent effects,” Pure Appl. Chem.55(2), 289–298 (1983).
[CrossRef]

1982 (1)

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler High-Resolution Spectra of benzene: Anomalous Results in the “Channel Three” Region,” J. Phys. Chem.86(25), 4847–4850 (1982).
[CrossRef]

1975 (2)

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc.97(8), 1993–2005 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc.97(8), 2005–2013 (1975).
[CrossRef]

1972 (1)

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
[CrossRef]

1948 (1)

C. N. Yang, “On the angular distribution in nuclear reactions and coincidence measurements,” Phys. Rev.74(7), 764–772 (1948).
[CrossRef]

Blanchet, V.

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature401(6748), 52–54 (1999).
[CrossRef]

Bodi, A.

T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
[CrossRef] [PubMed]

Bragg, A. E.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev.104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

Brand, E.

C. D. Keefe and E. Brand, “Optical constants and vibrational analysis of ethylbenzene between 4000 and 450 cm−1 at 25 °C,”J. Mol. Strut.691(1-3), 181–189 (2004).
[CrossRef]

Brutschy, B.

C. Riehn, A. Weichert, and B. Brutschy, “Probing benzene in a new way: high-resolution time-resolved rotational spectroscopy,” J. Phys. Chem. A105(23), 5618–5621 (2001).
[CrossRef]

Carley, R. E.

G. A. Worth, R. E. Carley, and H. H. Fielding, “Using photoelectron spectroscopy to unravel the excited state dynamics of benzene,” Chem. Phys.338(2-3), 220–227 (2007).
[CrossRef]

Clara, M.

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B71(3), 431–437 (2000).
[CrossRef]

Dedonder-Lardeux, C.

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
[CrossRef]

Dribinski, V.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum.73(7), 2634–2642 (2002).
[CrossRef]

Eppink, A. T. J. B.

A. T. J. B. Eppink and D. H. Parker, “Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen,” Rev. Sci. Instrum.68(9), 3477–3488 (1997).
[CrossRef]

Farmanara, P.

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A105(23), 5613–5617 (2001).
[CrossRef]

Fielding, H. H.

G. A. Worth, R. E. Carley, and H. H. Fielding, “Using photoelectron spectroscopy to unravel the excited state dynamics of benzene,” Chem. Phys.338(2-3), 220–227 (2007).
[CrossRef]

Freudenberg, Th.

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
[CrossRef]

Fuji, T.

Y. I. Suzuki, T. Horio, T. Fuji, and T. Suzuki, “Time-resolved photoelectron imaging of S2 → S1 internal conversion in benzene and toluene,” J. Chem. Phys.134(18), 184313 (2011).
[CrossRef] [PubMed]

T. Horio, T. Fuji, Y. I. Suzuki, and T. Suzuki, “Probing Ultrafast Internal Conversion through Conical Intersection via Time-Energy Map of Photoelectron Angular Anisotropy,” J. Am. Chem. Soc.131(30), 10392–10393 (2009).
[CrossRef] [PubMed]

Gerber, T.

T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
[CrossRef] [PubMed]

A. M. Walser, M. Meisinger, P. P. Radi, T. Gerber, and G. Knopp, “Resonant UV-fs-TCFWM spectroscopy on formaldehyde,” Phys. Chem. Chem. Phys.11(38), 8456–8466 (2009).
[CrossRef] [PubMed]

Grotemeyer, J.

F. Gunzer and J. Grotemeyer, “New features in the mass analyzed threshold ionization (MATI) spectra of alkyl benzenes,” Phys. Chem. Chem. Phys.4(24), 5966–5972 (2002).
[CrossRef]

Gunzer, F.

F. Gunzer and J. Grotemeyer, “New features in the mass analyzed threshold ionization (MATI) spectra of alkyl benzenes,” Phys. Chem. Chem. Phys.4(24), 5966–5972 (2002).
[CrossRef]

Gusten, H.

L. Klasinc, B. Kovac, and H. Gusten, “Photoelectron spectra of acenes. Electronic structure and substituent effects,” Pure Appl. Chem.55(2), 289–298 (1983).
[CrossRef]

Hellerer, Th.

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B71(3), 431–437 (2000).
[CrossRef]

Hemberger, P.

T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
[CrossRef] [PubMed]

Hertel, I. V.

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys.69(6), 1897–2003 (2006).
[CrossRef]

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A105(23), 5613–5617 (2001).
[CrossRef]

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
[CrossRef]

Horio, T.

Y. I. Suzuki, T. Horio, T. Fuji, and T. Suzuki, “Time-resolved photoelectron imaging of S2 → S1 internal conversion in benzene and toluene,” J. Chem. Phys.134(18), 184313 (2011).
[CrossRef] [PubMed]

T. Horio, T. Fuji, Y. I. Suzuki, and T. Suzuki, “Probing Ultrafast Internal Conversion through Conical Intersection via Time-Energy Map of Photoelectron Angular Anisotropy,” J. Am. Chem. Soc.131(30), 10392–10393 (2009).
[CrossRef] [PubMed]

Huang, C. L.

C. L. Huang, J. C. Jiang, S. H. Lin, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene at 248 nm,” J. Chem. Phys.116(18), 7779–7782 (2002).
[CrossRef]

C. L. Huang, J. C. Jiang, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene and n-propylbenzene in a molecular beam,” J. Chem. Phys.117(15), 7034–7040 (2002).
[CrossRef]

Jiang, J. C.

C. L. Huang, J. C. Jiang, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene and n-propylbenzene in a molecular beam,” J. Chem. Phys.117(15), 7034–7040 (2002).
[CrossRef]

C. L. Huang, J. C. Jiang, S. H. Lin, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene at 248 nm,” J. Chem. Phys.116(18), 7779–7782 (2002).
[CrossRef]

Jouvet, C.

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
[CrossRef]

Keefe, C. D.

C. D. Keefe and E. Brand, “Optical constants and vibrational analysis of ethylbenzene between 4000 and 450 cm−1 at 25 °C,”J. Mol. Strut.691(1-3), 181–189 (2004).
[CrossRef]

Klasinc, L.

L. Klasinc, B. Kovac, and H. Gusten, “Photoelectron spectra of acenes. Electronic structure and substituent effects,” Pure Appl. Chem.55(2), 289–298 (1983).
[CrossRef]

Knight, A. E. W.

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc.97(8), 1993–2005 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc.97(8), 2005–2013 (1975).
[CrossRef]

Knopp, G.

T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
[CrossRef] [PubMed]

A. M. Walser, M. Meisinger, P. P. Radi, T. Gerber, and G. Knopp, “Resonant UV-fs-TCFWM spectroscopy on formaldehyde,” Phys. Chem. Chem. Phys.11(38), 8456–8466 (2009).
[CrossRef] [PubMed]

Kovac, B.

L. Klasinc, B. Kovac, and H. Gusten, “Photoelectron spectra of acenes. Electronic structure and substituent effects,” Pure Appl. Chem.55(2), 289–298 (1983).
[CrossRef]

Lee, Y. T.

C. L. Huang, J. C. Jiang, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene and n-propylbenzene in a molecular beam,” J. Chem. Phys.117(15), 7034–7040 (2002).
[CrossRef]

C. L. Huang, J. C. Jiang, S. H. Lin, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene at 248 nm,” J. Chem. Phys.116(18), 7779–7782 (2002).
[CrossRef]

Lin, S. H.

C. L. Huang, J. C. Jiang, S. H. Lin, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene at 248 nm,” J. Chem. Phys.116(18), 7779–7782 (2002).
[CrossRef]

Liu, Y.

T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
[CrossRef] [PubMed]

Y. Liu, B. Tang, H. Shen, S. Zhang, and B. Zhang, “Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging,” Opt. Express18(6), 5791–5801 (2010).
[CrossRef] [PubMed]

Mandelshtam, V. A.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum.73(7), 2634–2642 (2002).
[CrossRef]

Meisinger, M.

A. M. Walser, M. Meisinger, P. P. Radi, T. Gerber, and G. Knopp, “Resonant UV-fs-TCFWM spectroscopy on formaldehyde,” Phys. Chem. Chem. Phys.11(38), 8456–8466 (2009).
[CrossRef] [PubMed]

Neumark, D. M.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev.104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

Neusser, H. J.

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B71(3), 431–437 (2000).
[CrossRef]

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler High-Resolution Spectra of benzene: Anomalous Results in the “Channel Three” Region,” J. Phys. Chem.86(25), 4847–4850 (1982).
[CrossRef]

Ni, C. K.

C. L. Huang, J. C. Jiang, S. H. Lin, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene at 248 nm,” J. Chem. Phys.116(18), 7779–7782 (2002).
[CrossRef]

C. L. Huang, J. C. Jiang, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene and n-propylbenzene in a molecular beam,” J. Chem. Phys.117(15), 7034–7040 (2002).
[CrossRef]

Ossadtchi, A.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum.73(7), 2634–2642 (2002).
[CrossRef]

Parker, D. H.

A. T. J. B. Eppink and D. H. Parker, “Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen,” Rev. Sci. Instrum.68(9), 3477–3488 (1997).
[CrossRef]

Parmenter, C. S.

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc.97(8), 2005–2013 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc.97(8), 1993–2005 (1975).
[CrossRef]

Qin, C.

X. Qiu, C. Qin, J. Wang, Y. Tang, and B. Zhang, “Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states,” Phys. Rev. A86(3), 032505 (2012).
[CrossRef]

Qiu, X.

X. Qiu, C. Qin, J. Wang, Y. Tang, and B. Zhang, “Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states,” Phys. Rev. A86(3), 032505 (2012).
[CrossRef]

Radi, P.

T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
[CrossRef] [PubMed]

Radi, P. P.

A. M. Walser, M. Meisinger, P. P. Radi, T. Gerber, and G. Knopp, “Resonant UV-fs-TCFWM spectroscopy on formaldehyde,” Phys. Chem. Chem. Phys.11(38), 8456–8466 (2009).
[CrossRef] [PubMed]

Radloff, W.

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys.69(6), 1897–2003 (2006).
[CrossRef]

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A105(23), 5613–5617 (2001).
[CrossRef]

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
[CrossRef]

Reisler, H.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum.73(7), 2634–2642 (2002).
[CrossRef]

Riedle, E.

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler High-Resolution Spectra of benzene: Anomalous Results in the “Channel Three” Region,” J. Phys. Chem.86(25), 4847–4850 (1982).
[CrossRef]

Riehn, C.

C. Riehn, A. Weichert, and B. Brutschy, “Probing benzene in a new way: high-resolution time-resolved rotational spectroscopy,” J. Phys. Chem. A105(23), 5618–5621 (2001).
[CrossRef]

Schlag, E. W.

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler High-Resolution Spectra of benzene: Anomalous Results in the “Channel Three” Region,” J. Phys. Chem.86(25), 4847–4850 (1982).
[CrossRef]

Schuyler, M. W.

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc.97(8), 2005–2013 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc.97(8), 1993–2005 (1975).
[CrossRef]

Seideman, T.

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature401(6748), 52–54 (1999).
[CrossRef]

Shen, H.

Solgadi, D.

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
[CrossRef]

Stert, V.

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A105(23), 5613–5617 (2001).
[CrossRef]

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
[CrossRef]

Stolow, A.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev.104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature401(6748), 52–54 (1999).
[CrossRef]

Suzuki, T.

Y. I. Suzuki, T. Horio, T. Fuji, and T. Suzuki, “Time-resolved photoelectron imaging of S2 → S1 internal conversion in benzene and toluene,” J. Chem. Phys.134(18), 184313 (2011).
[CrossRef] [PubMed]

T. Horio, T. Fuji, Y. I. Suzuki, and T. Suzuki, “Probing Ultrafast Internal Conversion through Conical Intersection via Time-Energy Map of Photoelectron Angular Anisotropy,” J. Am. Chem. Soc.131(30), 10392–10393 (2009).
[CrossRef] [PubMed]

Suzuki, Y. I.

Y. I. Suzuki, T. Horio, T. Fuji, and T. Suzuki, “Time-resolved photoelectron imaging of S2 → S1 internal conversion in benzene and toluene,” J. Chem. Phys.134(18), 184313 (2011).
[CrossRef] [PubMed]

T. Horio, T. Fuji, Y. I. Suzuki, and T. Suzuki, “Probing Ultrafast Internal Conversion through Conical Intersection via Time-Energy Map of Photoelectron Angular Anisotropy,” J. Am. Chem. Soc.131(30), 10392–10393 (2009).
[CrossRef] [PubMed]

Sych, Y.

T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
[CrossRef] [PubMed]

Tang, B.

Tang, Y.

X. Qiu, C. Qin, J. Wang, Y. Tang, and B. Zhang, “Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states,” Phys. Rev. A86(3), 032505 (2012).
[CrossRef]

Walser, A. M.

A. M. Walser, M. Meisinger, P. P. Radi, T. Gerber, and G. Knopp, “Resonant UV-fs-TCFWM spectroscopy on formaldehyde,” Phys. Chem. Chem. Phys.11(38), 8456–8466 (2009).
[CrossRef] [PubMed]

Wang, J.

X. Qiu, C. Qin, J. Wang, Y. Tang, and B. Zhang, “Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states,” Phys. Rev. A86(3), 032505 (2012).
[CrossRef]

Weichert, A.

C. Riehn, A. Weichert, and B. Brutschy, “Probing benzene in a new way: high-resolution time-resolved rotational spectroscopy,” J. Phys. Chem. A105(23), 5618–5621 (2001).
[CrossRef]

Worth, G. A.

G. A. Worth, R. E. Carley, and H. H. Fielding, “Using photoelectron spectroscopy to unravel the excited state dynamics of benzene,” Chem. Phys.338(2-3), 220–227 (2007).
[CrossRef]

Yang, C. N.

C. N. Yang, “On the angular distribution in nuclear reactions and coincidence measurements,” Phys. Rev.74(7), 764–772 (1948).
[CrossRef]

Zewail, A. H.

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers,” Angew. Chem. Int. Ed. Engl.39(15), 2586–2631 (2000).
[CrossRef] [PubMed]

A. H. Zewail, “Laser Femtochemistry,” Science242(4886), 1645–1653 (1988).
[CrossRef] [PubMed]

Zgierski, M. Z.

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature401(6748), 52–54 (1999).
[CrossRef]

Zhang, B.

X. Qiu, C. Qin, J. Wang, Y. Tang, and B. Zhang, “Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states,” Phys. Rev. A86(3), 032505 (2012).
[CrossRef]

Y. Liu, B. Tang, H. Shen, S. Zhang, and B. Zhang, “Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging,” Opt. Express18(6), 5791–5801 (2010).
[CrossRef] [PubMed]

Zhang, S.

Angew. Chem. Int. Ed. Engl. (1)

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers,” Angew. Chem. Int. Ed. Engl.39(15), 2586–2631 (2000).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B71(3), 431–437 (2000).
[CrossRef]

Chem. Phys. (1)

G. A. Worth, R. E. Carley, and H. H. Fielding, “Using photoelectron spectroscopy to unravel the excited state dynamics of benzene,” Chem. Phys.338(2-3), 220–227 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Internal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett.281(1-3), 20–26 (1972).
[CrossRef]

Chem. Rev. (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev.104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (3)

T. Horio, T. Fuji, Y. I. Suzuki, and T. Suzuki, “Probing Ultrafast Internal Conversion through Conical Intersection via Time-Energy Map of Photoelectron Angular Anisotropy,” J. Am. Chem. Soc.131(30), 10392–10393 (2009).
[CrossRef] [PubMed]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc.97(8), 1993–2005 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc.97(8), 2005–2013 (1975).
[CrossRef]

J. Chem. Phys. (3)

Y. I. Suzuki, T. Horio, T. Fuji, and T. Suzuki, “Time-resolved photoelectron imaging of S2 → S1 internal conversion in benzene and toluene,” J. Chem. Phys.134(18), 184313 (2011).
[CrossRef] [PubMed]

C. L. Huang, J. C. Jiang, S. H. Lin, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene at 248 nm,” J. Chem. Phys.116(18), 7779–7782 (2002).
[CrossRef]

C. L. Huang, J. C. Jiang, Y. T. Lee, and C. K. Ni, “Photodissociation of ethylbenzene and n-propylbenzene in a molecular beam,” J. Chem. Phys.117(15), 7034–7040 (2002).
[CrossRef]

J. Mol. Strut. (1)

C. D. Keefe and E. Brand, “Optical constants and vibrational analysis of ethylbenzene between 4000 and 450 cm−1 at 25 °C,”J. Mol. Strut.691(1-3), 181–189 (2004).
[CrossRef]

J. Phys. Chem. (1)

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler High-Resolution Spectra of benzene: Anomalous Results in the “Channel Three” Region,” J. Phys. Chem.86(25), 4847–4850 (1982).
[CrossRef]

J. Phys. Chem. A (2)

C. Riehn, A. Weichert, and B. Brutschy, “Probing benzene in a new way: high-resolution time-resolved rotational spectroscopy,” J. Phys. Chem. A105(23), 5618–5621 (2001).
[CrossRef]

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A105(23), 5613–5617 (2001).
[CrossRef]

Nature (1)

V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature401(6748), 52–54 (1999).
[CrossRef]

Opt. Express (1)

Phys. Chem. Chem. Phys. (2)

F. Gunzer and J. Grotemeyer, “New features in the mass analyzed threshold ionization (MATI) spectra of alkyl benzenes,” Phys. Chem. Chem. Phys.4(24), 5966–5972 (2002).
[CrossRef]

A. M. Walser, M. Meisinger, P. P. Radi, T. Gerber, and G. Knopp, “Resonant UV-fs-TCFWM spectroscopy on formaldehyde,” Phys. Chem. Chem. Phys.11(38), 8456–8466 (2009).
[CrossRef] [PubMed]

Phys. Rev. (1)

C. N. Yang, “On the angular distribution in nuclear reactions and coincidence measurements,” Phys. Rev.74(7), 764–772 (1948).
[CrossRef]

Phys. Rev. A (1)

X. Qiu, C. Qin, J. Wang, Y. Tang, and B. Zhang, “Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states,” Phys. Rev. A86(3), 032505 (2012).
[CrossRef]

Pure Appl. Chem. (1)

L. Klasinc, B. Kovac, and H. Gusten, “Photoelectron spectra of acenes. Electronic structure and substituent effects,” Pure Appl. Chem.55(2), 289–298 (1983).
[CrossRef]

Rep. Prog. Phys. (1)

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys.69(6), 1897–2003 (2006).
[CrossRef]

Rev. Sci. Instrum. (3)

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum.73(7), 2634–2642 (2002).
[CrossRef]

A. T. J. B. Eppink and D. H. Parker, “Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen,” Rev. Sci. Instrum.68(9), 3477–3488 (1997).
[CrossRef]

T. Gerber, Y. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, and Y. Sych, “Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions,” Rev. Sci. Instrum.84(3), 033101 (2013).
[CrossRef] [PubMed]

Science (1)

A. H. Zewail, “Laser Femtochemistry,” Science242(4886), 1645–1653 (1988).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics