Abstract

We show how a combination of near-field scanning optical microscopy with crossed beam spectral interferometry allows a local measurement of the spectral phase and amplitude of light propagating in photonic structures. The method only requires measurement at the single point of interest and at a reference point, to correct for the relative phase of the interferometer branches, to retrieve the dispersion properties of the sample. Furthermore, since the measurement is performed in the spectral domain, the spectral phase and amplitude could be retrieved from a single camera frame, here in 70ms for a signal power of less than 100pW limited by the dynamic range of the 8-bit camera. The method is substantially faster than most previous time-resolved NSOM methods that are based on time-domain interferometry, which also reduced problems with drift. We demonstrate how the method can be used to measure the refractive index and group velocity in a waveguide structure.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
    [CrossRef] [PubMed]
  2. R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
    [CrossRef] [PubMed]
  3. L. Novotny and B. Hecht, Principles of Nano-optics(Cambridge University Press, Cambridge, 2006).
    [CrossRef]
  4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
    [CrossRef]
  5. D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
    [CrossRef]
  6. P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser & Photon. Rev.1–25 (2009).
  7. D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” arXiv:1211.1066 [physics.optics].
  8. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science294, 1080–1082 (2001).
    [CrossRef] [PubMed]
  9. A. Nesci, R. Dändliker, and H. P. Herzig, “Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,” Opt. Lett.26, 208–210 (2001).
    [CrossRef]
  10. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14(4), 1658–1672 (2006).
    [CrossRef] [PubMed]
  11. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
    [CrossRef]
  12. S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
    [CrossRef]
  13. M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express14, 11222–11233 (2006).
    [CrossRef] [PubMed]
  14. X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,”J. Phys. Chem. Lett.3, 1836–1841 (2012).
    [CrossRef]
  15. J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006).
    [CrossRef]
  16. M. Burresi, D. van Oosten, B. S. Song, S. Noda, and L. Kuipers, “Ultrafast reciprocal space investigation of cavity-waveguide coupling,” Opt. Lett.36, 1827–1829 (2011).
    [CrossRef] [PubMed]
  17. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B12, 2467–2474 (1995).
    [CrossRef]
  18. C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
    [CrossRef]
  19. S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11, 4309–4313 (2011).
    [CrossRef] [PubMed]
  20. S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
    [CrossRef] [PubMed]
  21. H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiment and theory,” Phys. Rev. E68, 026604 (2003).
    [CrossRef]
  22. S. A. Berry, J. C. Gates, and W. S. Brocklesby, “Determination of spatio-spectral properties of individual modes within multimode waveguides using spectrally resolved near-field scanning optical microscopy,” Appl. Phys. Lett.99, 141107 (2011).
    [CrossRef]
  23. H. Gersen, E. M. H. P. van Dijk, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E70, 066609 (2004).
    [CrossRef]
  24. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B14, 2095–2098 (1997).
    [CrossRef]
  25. P. Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express16, 13663–13675 (2008).
    [CrossRef] [PubMed]
  26. P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, “Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution,” J. Opt. Soc. Am. B25, A81–A92 (2008).
    [CrossRef]
  27. B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotem-poral amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams,” J. Opt. Soc. Am. B27(5), 933–940 (2010).
    [CrossRef]
  28. A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Appl. Phys. Lett.83, 2942–2945 (1999).
    [CrossRef]
  29. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
    [CrossRef] [PubMed]
  30. A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy92, 251–264 (2002).
    [CrossRef] [PubMed]
  31. M. Lohmeyer, Guided waves in rectangular integrated magnetooptic devices (Cuvillier Verlag, Göttingen, 1999), code available from http://wwwhome.math.utwente.nl/∼hammerm/Wmm_Manual/ .

2012 (4)

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,”J. Phys. Chem. Lett.3, 1836–1841 (2012).
[CrossRef]

2011 (4)

S. A. Berry, J. C. Gates, and W. S. Brocklesby, “Determination of spatio-spectral properties of individual modes within multimode waveguides using spectrally resolved near-field scanning optical microscopy,” Appl. Phys. Lett.99, 141107 (2011).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
[CrossRef]

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11, 4309–4313 (2011).
[CrossRef] [PubMed]

M. Burresi, D. van Oosten, B. S. Song, S. Noda, and L. Kuipers, “Ultrafast reciprocal space investigation of cavity-waveguide coupling,” Opt. Lett.36, 1827–1829 (2011).
[CrossRef] [PubMed]

2010 (2)

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotem-poral amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams,” J. Opt. Soc. Am. B27(5), 933–940 (2010).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
[CrossRef]

2009 (3)

D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
[CrossRef]

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser & Photon. Rev.1–25 (2009).

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

2008 (2)

2007 (1)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

2006 (3)

2004 (1)

H. Gersen, E. M. H. P. van Dijk, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E70, 066609 (2004).
[CrossRef]

2003 (2)

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiment and theory,” Phys. Rev. E68, 026604 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy92, 251–264 (2002).
[CrossRef] [PubMed]

2001 (2)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science294, 1080–1082 (2001).
[CrossRef] [PubMed]

A. Nesci, R. Dändliker, and H. P. Herzig, “Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,” Opt. Lett.26, 208–210 (2001).
[CrossRef]

1999 (1)

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Appl. Phys. Lett.83, 2942–2945 (1999).
[CrossRef]

1997 (1)

1995 (1)

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Alonso, B.

Alonso-Gonzalez, P.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
[CrossRef]

Arzubiaga, L.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
[CrossRef]

Asakawa, K.

Asano, T.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Atkin, J. M.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11, 4309–4313 (2011).
[CrossRef] [PubMed]

Balet, L.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Balistreri, M. L. M.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science294, 1080–1082 (2001).
[CrossRef] [PubMed]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Baumberg, J. J.

J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006).
[CrossRef]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Berry, S. A.

S. A. Berry, J. C. Gates, and W. S. Brocklesby, “Determination of spatio-spectral properties of individual modes within multimode waveguides using spectrally resolved near-field scanning optical microscopy,” Appl. Phys. Lett.99, 141107 (2011).
[CrossRef]

Berweger, S.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11, 4309–4313 (2011).
[CrossRef] [PubMed]

Bose, R.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

Bowlan, P.

Brehm, M.

Brinks, D.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” arXiv:1211.1066 [physics.optics].

Brixner, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Brocklesby, W. S.

S. A. Berry, J. C. Gates, and W. S. Brocklesby, “Determination of spatio-spectral properties of individual modes within multimode waveguides using spectrally resolved near-field scanning optical microscopy,” Appl. Phys. Lett.99, 141107 (2011).
[CrossRef]

J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006).
[CrossRef]

Burresi, M.

Casanova, F.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
[CrossRef]

Castro-Lopez, M.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” arXiv:1211.1066 [physics.optics].

Chaipiboonwong, T.

J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006).
[CrossRef]

Charlton, M. D. B.

J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006).
[CrossRef]

Chériaux, G.

Chuvilin, A.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
[CrossRef]

Coughlan, M. A.

Craig, I. M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,”J. Phys. Chem. Lett.3, 1836–1841 (2012).
[CrossRef]

Dändliker, R.

Engelen, R. J. P.

Fiore, A.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Fox, A. M.

D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
[CrossRef]

Francardi, M.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Fuchs, U.

Gabolde, P.

García de Abajo, F. J.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Gates, J. C.

S. A. Berry, J. C. Gates, and W. S. Brocklesby, “Determination of spatio-spectral properties of individual modes within multimode waveguides using spectrally resolved near-field scanning optical microscopy,” Appl. Phys. Lett.99, 141107 (2011).
[CrossRef]

Geisler, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

Gerardino, A.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Gersen, H.

H. Gersen, E. M. H. P. van Dijk, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E70, 066609 (2004).
[CrossRef]

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiment and theory,” Phys. Rev. E68, 026604 (2003).
[CrossRef]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science294, 1080–1082 (2001).
[CrossRef] [PubMed]

Gurioli, M.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Hecht, B.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-optics(Cambridge University Press, Cambridge, 2006).
[CrossRef]

Hernández-Toro, J.

Herzig, H. P.

Hietschold, M.

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy92, 251–264 (2002).
[CrossRef] [PubMed]

Hildner, R.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” arXiv:1211.1066 [physics.optics].

Hillenbrand, R.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
[CrossRef]

Huang, J.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

Hueso, L. E.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
[CrossRef]

Ikeda, N.

Imhof, A.

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Appl. Phys. Lett.83, 2942–2945 (1999).
[CrossRef]

Intonti, F.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Joffre, M.

Jones, B. D.

D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
[CrossRef]

Keilmann, F.

Keitzl, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

Kim, D.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

Kim, H.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

Korterik, J. P.

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

H. Gersen, E. M. H. P. van Dijk, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E70, 066609 (2004).
[CrossRef]

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiment and theory,” Phys. Rev. E68, 026604 (2003).
[CrossRef]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science294, 1080–1082 (2001).
[CrossRef] [PubMed]

Krauss, T. F.

D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
[CrossRef]

Kuipers, L.

M. Burresi, D. van Oosten, B. S. Song, S. Noda, and L. Kuipers, “Ultrafast reciprocal space investigation of cavity-waveguide coupling,” Opt. Lett.36, 1827–1829 (2011).
[CrossRef] [PubMed]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

H. Gersen, E. M. H. P. van Dijk, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E70, 066609 (2004).
[CrossRef]

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiment and theory,” Phys. Rev. E68, 026604 (2003).
[CrossRef]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science294, 1080–1082 (2001).
[CrossRef] [PubMed]

Lagendijk, A.

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Appl. Phys. Lett.83, 2942–2945 (1999).
[CrossRef]

Lepetit, L.

Levis, R. J.

Li, L. H.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Lienau, C.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser & Photon. Rev.1–25 (2009).

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
[CrossRef]

Méndez, C.

Meshulach, D.

Mills, J. D.

J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006).
[CrossRef]

Nesci, A.

Netti, C.

J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006).
[CrossRef]

Noda, S.

M. Burresi, D. van Oosten, B. S. Song, S. Noda, and L. Kuipers, “Ultrafast reciprocal space investigation of cavity-waveguide coupling,” Opt. Lett.36, 1827–1829 (2011).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-optics(Cambridge University Press, Cambridge, 2006).
[CrossRef]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
[CrossRef]

O’Brien, D.

D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
[CrossRef]

Olmon, R. L.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11, 4309–4313 (2011).
[CrossRef] [PubMed]

Pack, A.

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy92, 251–264 (2002).
[CrossRef] [PubMed]

Park, N.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Piglosiewicz, B.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

Pomraenke, R.

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser & Photon. Rev.1–25 (2009).

Rang, M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,”J. Phys. Chem. Lett.3, 1836–1841 (2012).
[CrossRef]

Raschke, M. B.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,”J. Phys. Chem. Lett.3, 1836–1841 (2012).
[CrossRef]

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11, 4309–4313 (2011).
[CrossRef] [PubMed]

Razinskas, G.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

Rewitz, C.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

Riboli, F.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Roberts, J. S.

D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
[CrossRef]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Ropers, C.

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser & Photon. Rev.1–25 (2009).

Roso, L.

Sadiq, D.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

San Román, J.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
[CrossRef]

Schliesser, A.

Schmidt, S.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
[CrossRef]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
[CrossRef]

Shirdel, J.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

Silberberg, Y.

Skolnick, M. S.

D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
[CrossRef]

Sola, Í. J.

Solomon, G. S.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Song, B. S.

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Sprik, R.

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Appl. Phys. Lett.83, 2942–2945 (1999).
[CrossRef]

Sridharan, D.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Sugimoto, Y.

Sung Lee, J.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

Szymanski, D. M.

D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
[CrossRef]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
[CrossRef]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
[CrossRef]

Trebino, R.

Tuchscherer, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

van Dijk, E. M. H. P.

H. Gersen, E. M. H. P. van Dijk, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E70, 066609 (2004).
[CrossRef]

van Hulst, N. F.

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

H. Gersen, E. M. H. P. van Dijk, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E70, 066609 (2004).
[CrossRef]

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiment and theory,” Phys. Rev. E68, 026604 (2003).
[CrossRef]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science294, 1080–1082 (2001).
[CrossRef] [PubMed]

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” arXiv:1211.1066 [physics.optics].

van Oosten, D.

Varela, Ó.

Vasa, P.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser & Photon. Rev.1–25 (2009).

Vignolini, S.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Vos, W. L.

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Appl. Phys. Lett.83, 2942–2945 (1999).
[CrossRef]

Waks, E.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

Wannemacher, R.

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy92, 251–264 (2002).
[CrossRef] [PubMed]

Watanabe, Y.

Wiersma, D. S.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

Xu, X. G.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,”J. Phys. Chem. Lett.3, 1836–1841 (2012).
[CrossRef]

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11, 4309–4313 (2011).
[CrossRef] [PubMed]

Yelin, D.

Zaïr, A.

Zeitner, U. D.

Zoorob, M. E.

J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006).
[CrossRef]

ACS Nano (1)

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. Sung Lee, P. Vasa, N. Park, D. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

S. A. Berry, J. C. Gates, and W. S. Brocklesby, “Determination of spatio-spectral properties of individual modes within multimode waveguides using spectrally resolved near-field scanning optical microscopy,” Appl. Phys. Lett.99, 141107 (2011).
[CrossRef]

J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, C. Netti, M. E. Zoorob, and J. J. Baumberg, “Group velocity measurement using spectral interference in near-field scanning optical microscopy,” Appl. Phys. Lett.89, 051101 (2006).
[CrossRef]

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Appl. Phys. Lett.83, 2942–2945 (1999).
[CrossRef]

D. M. Szymanski, B. D. Jones, M. S. Skolnick, A. M. Fox, D. O’Brien, T. F. Krauss, and J. S. Roberts, “Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers,” Appl. Phys. Lett.95, 141108 (2009).
[CrossRef]

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett.94, 163102 (2009).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. Lett. (1)

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,”J. Phys. Chem. Lett.3, 1836–1841 (2012).
[CrossRef]

Laser & Photon. Rev. (1)

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser & Photon. Rev.1–25 (2009).

Nano Lett. (2)

C. Rewitz, T. Keitzl, P. Tuchscherer, J. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far–field spectral interferometry,” Nano Lett.12, 45–49 (2012).
[CrossRef]

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11, 4309–4313 (2011).
[CrossRef] [PubMed]

Nature (2)

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007).
[CrossRef] [PubMed]

Nature Photonics (1)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics4, 477–483 (2010).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature photonics5, 283–287 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. E (2)

H. Gersen, E. M. H. P. van Dijk, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E70, 066609 (2004).
[CrossRef]

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiment and theory,” Phys. Rev. E68, 026604 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett.108, 227402 (2012).
[CrossRef] [PubMed]

Science (1)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science294, 1080–1082 (2001).
[CrossRef] [PubMed]

Ultramicroscopy (1)

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy92, 251–264 (2002).
[CrossRef] [PubMed]

Other (3)

M. Lohmeyer, Guided waves in rectangular integrated magnetooptic devices (Cuvillier Verlag, Göttingen, 1999), code available from http://wwwhome.math.utwente.nl/∼hammerm/Wmm_Manual/ .

L. Novotny and B. Hecht, Principles of Nano-optics(Cambridge University Press, Cambridge, 2006).
[CrossRef]

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” arXiv:1211.1066 [physics.optics].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Illustration of the principle of the crossed beam spectral interferometry. b)The experimental setup, combining crossed beam spectral interferometry and a Mach-Zehnder interferometer. The output from the NSOM probe can be switched between the SEA TADPOLE spectrometer and the Mach-Zehnder interferometer. FC=fiber coupler, ref-STP=reference for SEA TADPOLE measurement, refMZ=reference for Mach-Zehnder interferometer, AOM=acousto-optical modulator, P=polarization controller, LIA=lock-in amplifier.

Fig. 2
Fig. 2

a) The optical amplitude of the pulse in the waveguide, measured by heterodyne detection in the Mach-Zehnder interferometer. The white line is the amplitude across the center of the pulse. b) Topography of the waveguide. The colour scale is graded in μm. c) The interferogram from a SEA TADPOLE measurement in a single point on top of the waveguide. The interferogram is obtained in a single camera frame with an integration time of 70 ms. d) The retrieved phase (thick black line) from the interferogram in c), equivalent to the difference in spectral phase Δφ(ω) between the reference and signal field and the spectrum (thin red line) S(ω) of the signal field.

Fig. 3
Fig. 3

(a) The change in spectral phase between a reference point and probe positions 2.5, 7.5, 12.5, 17.5, and 22.5 μm further along on the waveguide. (b) The intensity of the electric field of the pulse in the time domain for the five probe positions and the reference point. The fifth pulse is drawn in a contrasting colour (red) to make the pulse structure easier to see. The variations in signal level and thus height of the pulses are due to unevenness of the sample surface. (c) The position of the center of the pulse versus probe position (crosses). The line is a linear fit to the data. The group index calculated from the slope of the fitted line is ng = 1.51.

Fig. 4
Fig. 4

(a) The spectral phase at 9 probe positions at 244 nm intervals. (b) The calculated refractive index as a function of wavelength. Each point is obtained from a linear fit to the 9 phases measured for each wavelength.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S ( ω ) = S ref ( ω ) + S signal ( ω ) + S ref ( ω ) S signal ( ω ) cos ( k y sin θ φ ref ( ω ) + φ signal ( ω ) ) .
E 2 ( ω ) = E 1 ( ω ) H sample ( ω ) = | E 1 ( ω ) | | H ( ω ) | exp ( i ( φ 1 ( ω ) + Δ φ sample ( ω ) ) ) ,
φ ( ω ) = φ 0 + φ 1 ( ω ω 0 ) + φ 2 2 ( ω ω 0 ) 2 + ,
τ g ( ω ) = φ ω .
n φ ( ω ) = φ ( ω ) λ 2 π L .

Metrics