Abstract

Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging, 1st ed. (Wiley-Blackwell, 2001).
  2. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
    [CrossRef]
  3. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett.34(19), 2988–2900 (2009).
    [CrossRef] [PubMed]
  4. C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express18(3), 3023–3034 (2010).
    [CrossRef] [PubMed]
  5. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13(3), 689–694 (2005).
    [CrossRef] [PubMed]
  6. J. A. Davis, D. E. McNamara, D. M. Cottrell, and J. Campos, “Image processing with the radial Hilbert transform: theory and experiments,” Opt. Lett.25(2), 99–101 (2000).
    [CrossRef]
  7. C.-S. Guo, Y.-J. Han, J.-B. Xu, and J. Ding, “Radial Hilbert transform with Laguerre-Gaussian spatial filters,” Opt. lett.31(10), 1394–1396 (2006).
    [CrossRef] [PubMed]
  8. G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A.26(8), 1788–1797 (2009).
    [CrossRef]
  9. R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13, 044003 (2011).
    [CrossRef]
  10. J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-Dimensional optical multi-beam micromanipulation,” Opt. Express16(10), 7244–7250 (2008)
    [CrossRef] [PubMed]
  11. M. Hasler, T. Haist, and W. Osten, “Stereo vision in spatial-light-modulator–based microscopy,” Opt. Lett.37(12), 2238–2240 (2012).
    [CrossRef] [PubMed]
  12. G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nano-metric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express20(24), 26,681–26,695 (2012).
    [CrossRef]
  13. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
    [CrossRef] [PubMed]
  14. B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PloS one8(2), e56930 (2013).
    [CrossRef] [PubMed]
  15. P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt.38(32), 6692–6699 (1999).
    [CrossRef]
  16. H. Sierra, J.-Y. Zheng, B. Rabin, and N. N. Boustany, “Measurement of object structure from size-encoded images generated by optically-implemented Gabor filters,” Opt. Express20(27), 28698–28706 (2012).
    [CrossRef]
  17. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. lett.31(2), 181–183 (2006).
    [CrossRef] [PubMed]
  18. M. D. Lew, S. F. Lee, M. Badieirostami, and W. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. lett.36(2), 202–204 (2011).
    [CrossRef] [PubMed]
  19. L. Camacho, V. Micó, Z. Zalevsky, and J. Garcí, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express18(7), 6755–6766 (2010).
    [CrossRef] [PubMed]
  20. G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
    [CrossRef] [PubMed]
  21. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  22. M. P. Lee and M. J. Padgett, “Optical tweezers: a light touch,” J. Microsc.248(3), 219–222 (2012).
    [CrossRef] [PubMed]
  23. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34(11), 1859–1866 (1995).
    [CrossRef] [PubMed]
  24. T.-C. Poon and M. Motamedi, “Optical/digital incoherent image processing for extended depth of field,” Appl. Opt.26(21), 4612–4615 (1987).
    [CrossRef] [PubMed]
  25. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett.99, 213,901 (2007).
    [CrossRef]
  26. G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
    [CrossRef]
  27. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt.45(5), 897–903 (2006).
    [CrossRef] [PubMed]
  28. F. Zernike, “How I discovered phase contrast,” Science121(3141), 345–349 (1955).
    [CrossRef] [PubMed]
  29. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express16(24), 19,821–19,829 (2008).
    [CrossRef]
  30. R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Special Topics199, 149–158 (2011).
    [CrossRef]
  31. K. D. Wulff, D. G. Cole, R. L. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14(9), 4170–4175 (2006).
    [CrossRef] [PubMed]
  32. R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124,004 (2010).
    [CrossRef]
  33. D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
    [CrossRef]

2013

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PloS one8(2), e56930 (2013).
[CrossRef] [PubMed]

2012

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

M. P. Lee and M. J. Padgett, “Optical tweezers: a light touch,” J. Microsc.248(3), 219–222 (2012).
[CrossRef] [PubMed]

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nano-metric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express20(24), 26,681–26,695 (2012).
[CrossRef]

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

M. Hasler, T. Haist, and W. Osten, “Stereo vision in spatial-light-modulator–based microscopy,” Opt. Lett.37(12), 2238–2240 (2012).
[CrossRef] [PubMed]

H. Sierra, J.-Y. Zheng, B. Rabin, and N. N. Boustany, “Measurement of object structure from size-encoded images generated by optically-implemented Gabor filters,” Opt. Express20(27), 28698–28706 (2012).
[CrossRef]

2011

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

M. D. Lew, S. F. Lee, M. Badieirostami, and W. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. lett.36(2), 202–204 (2011).
[CrossRef] [PubMed]

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Special Topics199, 149–158 (2011).
[CrossRef]

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13, 044003 (2011).
[CrossRef]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

2010

2009

T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett.34(19), 2988–2900 (2009).
[CrossRef] [PubMed]

G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A.26(8), 1788–1797 (2009).
[CrossRef]

2008

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express16(24), 19,821–19,829 (2008).
[CrossRef]

J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-Dimensional optical multi-beam micromanipulation,” Opt. Express16(10), 7244–7250 (2008)
[CrossRef] [PubMed]

2007

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett.99, 213,901 (2007).
[CrossRef]

2006

2005

2004

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
[CrossRef]

2003

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2000

1999

1995

1987

1955

F. Zernike, “How I discovered phase contrast,” Science121(3141), 345–349 (1955).
[CrossRef] [PubMed]

Badieirostami, M.

Bashir, R.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PloS one8(2), e56930 (2013).
[CrossRef] [PubMed]

Bernet, S.

Bhaduri, B.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PloS one8(2), e56930 (2013).
[CrossRef] [PubMed]

Blanchard, P. M.

Boustany, N. N.

Bowman, R.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Special Topics199, 149–158 (2011).
[CrossRef]

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13, 044003 (2011).
[CrossRef]

Bowman, R. W.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124,004 (2010).
[CrossRef]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett.99, 213,901 (2007).
[CrossRef]

Camacho, L.

Campos, J.

Carberry, D.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

Carberry, D. M.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

Cathey, W. T.

Chan, V.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PloS one8(2), e56930 (2013).
[CrossRef] [PubMed]

Christodoulides, D. N.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett.99, 213,901 (2007).
[CrossRef]

Clark, R. L.

Cole, D. G.

Cooper, J.

Cottrell, D. M.

Courtial, J.

D’Ambrosio, V.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Special Topics199, 149–158 (2011).
[CrossRef]

Dam, J. S.

Davis, J. A.

DeLuca, J.

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nano-metric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express20(24), 26,681–26,695 (2012).
[CrossRef]

DeLuca, K.

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nano-metric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express20(24), 26,681–26,695 (2012).
[CrossRef]

Di Leonardo, R.

Di Trapani, P.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Special Topics199, 149–158 (2011).
[CrossRef]

Dienerowitz, M.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

Ding, H.

Ding, J.

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett.99, 213,901 (2007).
[CrossRef]

Dowski, E. R.

Fassl, S.

Fürhapter, S.

Garcí, J.

Gibson, G.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13, 044003 (2011).
[CrossRef]

K. D. Wulff, D. G. Cole, R. L. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14(9), 4170–4175 (2006).
[CrossRef] [PubMed]

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt.45(5), 897–903 (2006).
[CrossRef] [PubMed]

Gibson, G. M.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

Gillette, M. U.

Glückstad, J.

Greenaway, A. H.

Greengard, A.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Grieve, J.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

Grover, G.

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nano-metric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express20(24), 26,681–26,695 (2012).
[CrossRef]

Guo, C.-S.

Haist, T.

Han, Y.-J.

Hanna, S.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

Hasler, M.

Jedrkiewicz, O.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Special Topics199, 149–158 (2011).
[CrossRef]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express16(24), 19,821–19,829 (2008).
[CrossRef]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13(3), 689–694 (2005).
[CrossRef] [PubMed]

Jordan, P.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt.45(5), 897–903 (2006).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
[CrossRef]

Karunwi, K.

Khan, S.

Laczik, Z. J.

Leach, J.

Lee, M. P.

M. P. Lee and M. J. Padgett, “Optical tweezers: a light touch,” J. Microsc.248(3), 219–222 (2012).
[CrossRef] [PubMed]

Lee, S. F.

Lew, M. D.

Linnenberger, A.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express18(3), 3023–3034 (2010).
[CrossRef] [PubMed]

T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett.34(19), 2988–2900 (2009).
[CrossRef] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express16(24), 19,821–19,829 (2008).
[CrossRef]

McIntyre, T. J.

McNamara, D. E.

Micó, V.

Miles, M.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

Miles, M. J.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

Millet, L.

Mir, M.

Moerner, W.

Motamedi, M.

Murphy, D. B.

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging, 1st ed. (Wiley-Blackwell, 2001).

Osten, W.

M. Hasler, T. Haist, and W. Osten, “Stereo vision in spatial-light-modulator–based microscopy,” Opt. Lett.37(12), 2238–2240 (2012).
[CrossRef] [PubMed]

G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A.26(8), 1788–1797 (2009).
[CrossRef]

Padgett, M.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Special Topics199, 149–158 (2011).
[CrossRef]

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13, 044003 (2011).
[CrossRef]

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt.45(5), 897–903 (2006).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
[CrossRef]

Padgett, M. J.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

M. P. Lee and M. J. Padgett, “Optical tweezers: a light touch,” J. Microsc.248(3), 219–222 (2012).
[CrossRef] [PubMed]

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124,004 (2010).
[CrossRef]

K. D. Wulff, D. G. Cole, R. L. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14(9), 4170–4175 (2006).
[CrossRef] [PubMed]

Palima, D.

Pedrini, G.

G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A.26(8), 1788–1797 (2009).
[CrossRef]

Perch-Nielsen, I. R.

Phillips, D.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

Phillips, D. B.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

Piestun, R.

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nano-metric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express20(24), 26,681–26,695 (2012).
[CrossRef]

A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. lett.31(2), 181–183 (2006).
[CrossRef] [PubMed]

Poon, T.-C.

Popescu, G.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PloS one8(2), e56930 (2013).
[CrossRef] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

Preece, D.

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13, 044003 (2011).
[CrossRef]

Quirin, S.

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nano-metric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express20(24), 26,681–26,695 (2012).
[CrossRef]

Rabin, B.

Rarity, J.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

Ritsch-Marte, M.

Rogers, J.

Rubino, E.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Special Topics199, 149–158 (2011).
[CrossRef]

Schechner, Y. Y.

Sierra, H.

Simpson, S.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

Sinclair, G.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt.45(5), 897–903 (2006).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
[CrossRef]

Situ, G.

G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A.26(8), 1788–1797 (2009).
[CrossRef]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett.99, 213,901 (2007).
[CrossRef]

Thomson, L.

Unarunotai, S.

Wang, R.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PloS one8(2), e56930 (2013).
[CrossRef] [PubMed]

Wang, Z.

Wickland, D.

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PloS one8(2), e56930 (2013).
[CrossRef] [PubMed]

Wright, A. J.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124,004 (2010).
[CrossRef]

Wulff, K.

Wulff, K. D.

Xu, J.-B.

Zalevsky, Z.

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science121(3141), 345–349 (1955).
[CrossRef] [PubMed]

Zheng, J.-Y.

Appl. Opt.

Eur. Phys. J. Special Topics

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, and M. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Special Topics199, 149–158 (2011).
[CrossRef]

Europhys. Lett.

D. Phillips, S. Simpson, J. Grieve, R. Bowman, G. Gibson, M. Padgett, J. Rarity, S. Hanna, M. Miles, and D. Carberry, “Force sensing with a shaped dielectric micro-tool,” Europhys. Lett.99(5), 58,004 (2012).
[CrossRef]

J. Microsc.

M. P. Lee and M. J. Padgett, “Optical tweezers: a light touch,” J. Microsc.248(3), 219–222 (2012).
[CrossRef] [PubMed]

J. Mod. Opt.

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
[CrossRef]

J. Opt.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124,004 (2010).
[CrossRef]

R. Bowman, D. Preece, G. Gibson, and M. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers,” J. Opt.13, 044003 (2011).
[CrossRef]

J. Opt. Soc. Am. A.

G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A.26(8), 1788–1797 (2009).
[CrossRef]

Laser Photon. Rev.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nano-metric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express20(24), 26,681–26,695 (2012).
[CrossRef]

K. D. Wulff, D. G. Cole, R. L. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14(9), 4170–4175 (2006).
[CrossRef] [PubMed]

J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-Dimensional optical multi-beam micromanipulation,” Opt. Express16(10), 7244–7250 (2008)
[CrossRef] [PubMed]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13(3), 689–694 (2005).
[CrossRef] [PubMed]

C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express18(3), 3023–3034 (2010).
[CrossRef] [PubMed]

L. Camacho, V. Micó, Z. Zalevsky, and J. Garcí, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express18(7), 6755–6766 (2010).
[CrossRef] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express16(24), 19,821–19,829 (2008).
[CrossRef]

H. Sierra, J.-Y. Zheng, B. Rabin, and N. N. Boustany, “Measurement of object structure from size-encoded images generated by optically-implemented Gabor filters,” Opt. Express20(27), 28698–28706 (2012).
[CrossRef]

Opt. lett.

Phys. Rev. Lett.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett.99, 213,901 (2007).
[CrossRef]

PloS one

B. Bhaduri, D. Wickland, R. Wang, V. Chan, R. Bashir, and G. Popescu, “Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM),” PloS one8(2), e56930 (2013).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83, 113107 (2012).
[CrossRef] [PubMed]

Science

F. Zernike, “How I discovered phase contrast,” Science121(3141), 345–349 (1955).
[CrossRef] [PubMed]

Other

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging, 1st ed. (Wiley-Blackwell, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The configuration of our SLM microscope. Shown at 45° is the z-axis with the inverted microscope and illumination. The polarising beamsplitter is used so that the vertical polarisation of the light goes through the intermediate image iris and on to the SLM, where the Fourier filter is displayed. There is then a 10nm bandpass filter so that dispersion is kept to a minimum in the sample images recorded by the camera. The horizontally polarised light forms the full image of the sample on the wide angle camera. Inset shows a 3D drawing of the system at a scale of approximately 10 : 1.

Fig. 2
Fig. 2

Photograph of the system. Visible is the optical fibre illumination, motorised stage, SLM and CMOS cameras. The footprint of the system is 45cm × 30cm, and the height is approximately 35cm.

Fig. 3
Fig. 3

Illustrative intensity distributions of a 5μm silica particle in water. The particle is stuck to the coverslip and is moved through the focus of the microscope. A series of images were recorded at 0.5μm spacing in the axial direction, then four intensity isosurfaces were interpolated from the data (shown in shades of red). In the xy plane of each plot is an illustrative phase hologram used to Fourier filter the image. A darkfield filter has been used in (a), an annulus filter has been used in (b) and a cubic filter has been used in (c). The annular filter extends the depth of field of the imaging system. The cubic filter also extends the depth of field but in addition introduces a curved intensity profile. All these point spread functions were introduced by the SLM.

Fig. 4
Fig. 4

Shown here are results from combining the Fourier filters as described in the text while imaging three 5μm silica spheres suspended in optical adhesive. (a) – (c) Shows individual phase patterns for three imaging modes, namely, double-helix point spread function, defocus and darkfield, respectively. Aberration correction has been incorporated with these filters and each also includes a grating to diffract the image. The greyscale corresponds to 0 − 2π phase changes. (d) The SLM display, showing the combined filter as described by Equation 2. (e) The resulting image detected by the camera. We extract the subregions of the image indicated, each 220 × 220 pixels. The subregions correspond to each filter; top left: double helix, bottom left: defocus, right: darkfield, centre: undiffracted zero order image.

Fig. 5
Fig. 5

(a) A darkfield image of a dry sample of 200nm diameter gold particles stuck to a coverslip. (b) and (c) Images of a two photon polymerised star shape in water. Image (b) has had no aberration correction, while (c) has had aberration correction. (d) is a cross section throughout the point spread function of the microscope, obtained by imaging a 200nm gold particle in darkfield. Aberration correction is seen to improve contrast by 30%. The insets in (d) show contrast enhanced lateral point spread functions where (e) is aberration corrected and (f) uncorrected. A horizontal line indicates the cross sections in (d).

Fig. 6
Fig. 6

3D position coordinates can be obtained using the software’s particle tracking capabilities. (a) An image of the SLM display where the greyscale represents 0 − 2π phase change. Two apertures can be seen corresponding to the two views of the sample, each with a different grating so that the images from these angles don’t overlap in the image plane. (b) and (c) The different images extracted from an image recorded on the CMOS camera. The images are of the same object, 2μm polystyrene spheres undergoing Brownian motion in water. (d) Stereo visualisation of particle positions. The images (b) and (c) are colour coded and overlapped. With 3D stereo glasses, the user can visualise the scene with depth perception. Images (e) and (f) are of the same cheek epithelial cell nucleus as viewed with the stereo microscope. Viewing the sample from two directions affords additional geometric information about the cell structure.

Fig. 7
Fig. 7

Recorded images of a 5μm silica bead fixed in position on a microscope slide. We illuminated the bead with stereo illumination, so that the bead translates as we adjust the focus of the microscope objective over a 35μm range. We diffract the left and right views to different positions on the camera then extract, colour and overlap the images. (a) The SLM display along with stereo images as the bead goes through the focus of the microscope. (b) the SLM display used to refocus the bead as we change the focus of the objective lens. The refocusing does not change the position of the bead. A different holographic lens is needed for each focal position, shown is an example of the lens used at the 10μm position. (c) Darkfield stereo images. (d) Darkfield stereo with focus correction.

Fig. 8
Fig. 8

Measurement of the accuracy of z position measurement as a function of distance from the focal plane. The error is calculated from measuring the standard deviation of a series of position measurements of a 5μm silica particle stuck on the coverslip. The improvement is due to the increased contrast brought about by keeping the particle in focus.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ m = arg [ e i ( α u + β v + ϕ Filter ) ] ,
ϕ combined = arg [ m = 1 M R m e i ϕ m ] ,
δ z = δ x 2 tan θ ,

Metrics