Abstract

We propose an equilateral triangle resonator filter with an output waveguide and analyzed by the finite-difference time-domain technique. The filter can realize directional output with a high Q mode by means of the mode-field coupled into the output waveguide, which results a reduction in the scattering loss at the vertices. In addition, to the deformed equilateral triangle resonator filter, an optimum parameter with a cut corner of 0.23 μm, which is equal to that of the input waveguide and can be an optimal cut, is found to help increase in finesse, Q factors, extinction ratio and the output intensity on resonance of the drop port normalized with the through port .

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Paloczi, Y. Huang, A. Yariv, and S. Mookherjea, “Polymeric Mach-Zehnder interferometer using serially coupled microring resonators,” Opt. Express11(21), 2666–2671 (2003).
    [CrossRef] [PubMed]
  2. Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express16(15), 11066–11076 (2008).
    [CrossRef] [PubMed]
  3. X. Luo and A. W. Poon, “Many-element coupled-resonator optical waveguides using gapless-coupled microdisk resonators,” Opt. Express17(26), 23617–23628 (2009).
    [CrossRef] [PubMed]
  4. J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
    [CrossRef]
  5. Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, “Whispering gallery modes inside asymmetric resonant cavities,” Phys. Rev. Lett.93(13), 133902 (2004).
    [CrossRef] [PubMed]
  6. S. J. Wang, Y. D. Yang, and Y. Z. Huang, “Analysis of coupled microcircular resonators coupled to a bus waveguide with high output efficiency,” Opt. Lett.35(12), 1953–1955 (2010).
    [CrossRef] [PubMed]
  7. Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express17(25), 23010–23015 (2009).
    [CrossRef] [PubMed]
  8. N. Ma, C. Li, and A. W. Poon, “Laterally coupled hexagonal micropillar resonator add –drop filters in Silicon nitride,” IEEE Photon. Technol. Lett.16(11), 2487–2489 (2004).
    [CrossRef]
  9. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003).
    [CrossRef]
  10. S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).
  11. J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A73(3), 031802–031805 (2006).
    [CrossRef]
  12. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett.88(3), 031108–031110 (2006).
    [CrossRef]
  13. C. Y. Fong and A. W. Poon, “Planar corner-cut square microcavities: ray optics and FDTD analysis,” Opt. Express12(20), 4864–4874 (2004).
    [CrossRef] [PubMed]
  14. Q. Chen, Y. D. Yang, and Y. Z. Huang, “Prediction and suppression of strong dispersive coupling in microracetrack channel drop filters,” Opt. Lett.32(13), 1851–1853 (2007).
    [CrossRef] [PubMed]
  15. Y. D. Yang, Y. Z. Huang, and S. J. Wang, “Mode analysis for Equilateral-Triangle-Resonator microlasers with metal confinement layers,” IEEE J. Quantum Electron.45(12), 1529–1536 (2009).
    [CrossRef]
  16. Y. D. Yang, Y. Z. Huang, K. J. Che, S. J. Wang, Y. H. Hu, and Y. Du, “Equilateral-Triangle and square resonator semiconductor microlasers,” IEEE J. Quantum Electron.15(3), 879–884 (2009).
    [CrossRef]
  17. Q. Chen, Y. H. Hu, Y. Z. Huang, Y. Du, and Z. C. Fan, “Equilateral-Triangle-Resonator injection lasers with directional emission,” IEEE J. Quantum Electron.43(6), 440–444 (2007).
    [CrossRef]

2012

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

2010

2009

Y. D. Yang, Y. Z. Huang, and S. J. Wang, “Mode analysis for Equilateral-Triangle-Resonator microlasers with metal confinement layers,” IEEE J. Quantum Electron.45(12), 1529–1536 (2009).
[CrossRef]

Y. D. Yang, Y. Z. Huang, K. J. Che, S. J. Wang, Y. H. Hu, and Y. Du, “Equilateral-Triangle and square resonator semiconductor microlasers,” IEEE J. Quantum Electron.15(3), 879–884 (2009).
[CrossRef]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express17(25), 23010–23015 (2009).
[CrossRef] [PubMed]

X. Luo and A. W. Poon, “Many-element coupled-resonator optical waveguides using gapless-coupled microdisk resonators,” Opt. Express17(26), 23617–23628 (2009).
[CrossRef] [PubMed]

2008

2007

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Prediction and suppression of strong dispersive coupling in microracetrack channel drop filters,” Opt. Lett.32(13), 1851–1853 (2007).
[CrossRef] [PubMed]

Q. Chen, Y. H. Hu, Y. Z. Huang, Y. Du, and Z. C. Fan, “Equilateral-Triangle-Resonator injection lasers with directional emission,” IEEE J. Quantum Electron.43(6), 440–444 (2007).
[CrossRef]

2006

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A73(3), 031802–031805 (2006).
[CrossRef]

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett.88(3), 031108–031110 (2006).
[CrossRef]

2004

S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).

C. Y. Fong and A. W. Poon, “Planar corner-cut square microcavities: ray optics and FDTD analysis,” Opt. Express12(20), 4864–4874 (2004).
[CrossRef] [PubMed]

Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, “Whispering gallery modes inside asymmetric resonant cavities,” Phys. Rev. Lett.93(13), 133902 (2004).
[CrossRef] [PubMed]

N. Ma, C. Li, and A. W. Poon, “Laterally coupled hexagonal micropillar resonator add –drop filters in Silicon nitride,” IEEE Photon. Technol. Lett.16(11), 2487–2489 (2004).
[CrossRef]

2003

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003).
[CrossRef]

G. T. Paloczi, Y. Huang, A. Yariv, and S. Mookherjea, “Polymeric Mach-Zehnder interferometer using serially coupled microring resonators,” Opt. Express11(21), 2666–2671 (2003).
[CrossRef] [PubMed]

Awatsuji, Y.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Baryshnikov, Y.

Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, “Whispering gallery modes inside asymmetric resonant cavities,” Phys. Rev. Lett.93(13), 133902 (2004).
[CrossRef] [PubMed]

Berneschi, S.

Chang, R. K.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003).
[CrossRef]

Che, K. J.

Y. D. Yang, Y. Z. Huang, K. J. Che, S. J. Wang, Y. H. Hu, and Y. Du, “Equilateral-Triangle and square resonator semiconductor microlasers,” IEEE J. Quantum Electron.15(3), 879–884 (2009).
[CrossRef]

Chen, Q.

Q. Chen, Y. H. Hu, Y. Z. Huang, Y. Du, and Z. C. Fan, “Equilateral-Triangle-Resonator injection lasers with directional emission,” IEEE J. Quantum Electron.43(6), 440–444 (2007).
[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Prediction and suppression of strong dispersive coupling in microracetrack channel drop filters,” Opt. Lett.32(13), 1851–1853 (2007).
[CrossRef] [PubMed]

Chern, G. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003).
[CrossRef]

Du, Y.

Y. D. Yang, Y. Z. Huang, K. J. Che, S. J. Wang, Y. H. Hu, and Y. Du, “Equilateral-Triangle and square resonator semiconductor microlasers,” IEEE J. Quantum Electron.15(3), 879–884 (2009).
[CrossRef]

Q. Chen, Y. H. Hu, Y. Z. Huang, Y. Du, and Z. C. Fan, “Equilateral-Triangle-Resonator injection lasers with directional emission,” IEEE J. Quantum Electron.43(6), 440–444 (2007).
[CrossRef]

Fan, Z. C.

Q. Chen, Y. H. Hu, Y. Z. Huang, Y. Du, and Z. C. Fan, “Equilateral-Triangle-Resonator injection lasers with directional emission,” IEEE J. Quantum Electron.43(6), 440–444 (2007).
[CrossRef]

Fong, C. Y.

Hatanaka, K.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Heider, P.

Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, “Whispering gallery modes inside asymmetric resonant cavities,” Phys. Rev. Lett.93(13), 133902 (2004).
[CrossRef] [PubMed]

Hentschel, M.

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A73(3), 031802–031805 (2006).
[CrossRef]

Hierle, R.

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett.88(3), 031108–031110 (2006).
[CrossRef]

Horak, P.

Hu, Y. H.

Y. D. Yang, Y. Z. Huang, K. J. Che, S. J. Wang, Y. H. Hu, and Y. Du, “Equilateral-Triangle and square resonator semiconductor microlasers,” IEEE J. Quantum Electron.15(3), 879–884 (2009).
[CrossRef]

Q. Chen, Y. H. Hu, Y. Z. Huang, Y. Du, and Z. C. Fan, “Equilateral-Triangle-Resonator injection lasers with directional emission,” IEEE J. Quantum Electron.43(6), 440–444 (2007).
[CrossRef]

Huang, Y.

Huang, Y. Z.

S. J. Wang, Y. D. Yang, and Y. Z. Huang, “Analysis of coupled microcircular resonators coupled to a bus waveguide with high output efficiency,” Opt. Lett.35(12), 1953–1955 (2010).
[CrossRef] [PubMed]

Y. D. Yang, Y. Z. Huang, K. J. Che, S. J. Wang, Y. H. Hu, and Y. Du, “Equilateral-Triangle and square resonator semiconductor microlasers,” IEEE J. Quantum Electron.15(3), 879–884 (2009).
[CrossRef]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express17(25), 23010–23015 (2009).
[CrossRef] [PubMed]

Y. D. Yang, Y. Z. Huang, and S. J. Wang, “Mode analysis for Equilateral-Triangle-Resonator microlasers with metal confinement layers,” IEEE J. Quantum Electron.45(12), 1529–1536 (2009).
[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Prediction and suppression of strong dispersive coupling in microracetrack channel drop filters,” Opt. Lett.32(13), 1851–1853 (2007).
[CrossRef] [PubMed]

Q. Chen, Y. H. Hu, Y. Z. Huang, Y. Du, and Z. C. Fan, “Equilateral-Triangle-Resonator injection lasers with directional emission,” IEEE J. Quantum Electron.43(6), 440–444 (2007).
[CrossRef]

Inoue, J.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Johnson, N. M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003).
[CrossRef]

Kim, G. H.

S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).

Kim, S. H.

S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).

Kim, S. K.

S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).

Kintaka, K.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Kneissl, M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003).
[CrossRef]

Lauret, J. S.

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett.88(3), 031108–031110 (2006).
[CrossRef]

Lebental, M.

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett.88(3), 031108–031110 (2006).
[CrossRef]

Lee, Y.-H.

S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).

Li, C.

N. Ma, C. Li, and A. W. Poon, “Laterally coupled hexagonal micropillar resonator add –drop filters in Silicon nitride,” IEEE Photon. Technol. Lett.16(11), 2487–2489 (2004).
[CrossRef]

Luo, X.

Ma, N.

N. Ma, C. Li, and A. W. Poon, “Laterally coupled hexagonal micropillar resonator add –drop filters in Silicon nitride,” IEEE Photon. Technol. Lett.16(11), 2487–2489 (2004).
[CrossRef]

Majima, T.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Mookherjea, S.

Murugan, G. S.

Nishio, K.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Nunzi Conti, G.

Paloczi, G. T.

Panitchob, Y.

Park, H. G.

S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).

Parz, W.

Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, “Whispering gallery modes inside asymmetric resonant cavities,” Phys. Rev. Lett.93(13), 133902 (2004).
[CrossRef] [PubMed]

Pelli, S.

Poon, A. W.

Shin, D.-J.

S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).

Stone, A. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003).
[CrossRef]

Tureci, H. E.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003).
[CrossRef]

Ura, S.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Wang, S. J.

S. J. Wang, Y. D. Yang, and Y. Z. Huang, “Analysis of coupled microcircular resonators coupled to a bus waveguide with high output efficiency,” Opt. Lett.35(12), 1953–1955 (2010).
[CrossRef] [PubMed]

Y. D. Yang, Y. Z. Huang, K. J. Che, S. J. Wang, Y. H. Hu, and Y. Du, “Equilateral-Triangle and square resonator semiconductor microlasers,” IEEE J. Quantum Electron.15(3), 879–884 (2009).
[CrossRef]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express17(25), 23010–23015 (2009).
[CrossRef] [PubMed]

Y. D. Yang, Y. Z. Huang, and S. J. Wang, “Mode analysis for Equilateral-Triangle-Resonator microlasers with metal confinement layers,” IEEE J. Quantum Electron.45(12), 1529–1536 (2009).
[CrossRef]

Wiersig, J.

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A73(3), 031802–031805 (2006).
[CrossRef]

Wilkinson, J. S.

Yang, Y. D.

Yariv, A.

Zervas, M. N.

Zharnitsky, V.

Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, “Whispering gallery modes inside asymmetric resonant cavities,” Phys. Rev. Lett.93(13), 133902 (2004).
[CrossRef] [PubMed]

Zyss, J.

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett.88(3), 031108–031110 (2006).
[CrossRef]

Appl. Phys. Express

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Appl. Phys. Lett.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett.83(9), 1710–1712 (2003).
[CrossRef]

S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett.84(6), 861–863 (2004).

M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett.88(3), 031108–031110 (2006).
[CrossRef]

IEEE J. Quantum Electron.

Y. D. Yang, Y. Z. Huang, and S. J. Wang, “Mode analysis for Equilateral-Triangle-Resonator microlasers with metal confinement layers,” IEEE J. Quantum Electron.45(12), 1529–1536 (2009).
[CrossRef]

Y. D. Yang, Y. Z. Huang, K. J. Che, S. J. Wang, Y. H. Hu, and Y. Du, “Equilateral-Triangle and square resonator semiconductor microlasers,” IEEE J. Quantum Electron.15(3), 879–884 (2009).
[CrossRef]

Q. Chen, Y. H. Hu, Y. Z. Huang, Y. Du, and Z. C. Fan, “Equilateral-Triangle-Resonator injection lasers with directional emission,” IEEE J. Quantum Electron.43(6), 440–444 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Ma, C. Li, and A. W. Poon, “Laterally coupled hexagonal micropillar resonator add –drop filters in Silicon nitride,” IEEE Photon. Technol. Lett.16(11), 2487–2489 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A73(3), 031802–031805 (2006).
[CrossRef]

Phys. Rev. Lett.

Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, “Whispering gallery modes inside asymmetric resonant cavities,” Phys. Rev. Lett.93(13), 133902 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of an ETR filter with an output waveguide at one of the vertices.

Fig. 2
Fig. 2

The stable field distributions with a single frequency exciting source by the FDTD simulation at the wavelength of (a) 1.4845 µm in the ETR filter and (b) 1.4799 µm with a cut corner of 0.23 µm in the deformed ETR filter, respectively.

Fig. 3
Fig. 3

Transmission spectra at the through (blue curve) and drop (green curve) port for (a) ETR and (b) deformed ETR filter with the side length a = 6 µm, d = 0.23 µm, g = 0.20 µm.

Fig. 4
Fig. 4

(a) The finesse, mode Q factors and (b) extinction ratio, intensity ratio of the transmissions on-resonance at the drop port to the through port are plotted as the functions of the width of cut corner at one of the vertices with an output waveguide in the resonators, respectively.

Metrics