Abstract

We demonstrate that interference of absorption pathways can be used to control resonant coupling of light to guided modes in a manner analogous to quantum coherent control or electronically induced transparency. We illustrate the control of resonant coupling that interference affords using a plasmonic test system where tuning the phase of a grating is sufficient to vary the transfer of energy into the surface plasmon polariton by a factor of over 106. We show that such a structure could function as a one-way coupler, and present a simple explanation for the underlying physics.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Fraser, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, “Quantum interference in electron-hole generation in noncentrosymmetric semiconductors,” Phys. Rev. Lett.83, 4192–4195 (1999).
    [CrossRef]
  2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36–42 (1997).
    [CrossRef]
  3. W. Wan, Y. Chong, L. Ge, H. Noh, A. Douglas Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science311, 889–892 (2011).
    [CrossRef]
  4. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
    [CrossRef]
  5. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  6. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
    [CrossRef]
  7. H. Raether, Surface Plasmons, edited by G. Hohler, (Springer, Berlin, 1988).
  8. N. Rotenberg and J. E. Sipe, “Analytic model of plasmonic coupling: Surface relief gratings,” Phys. Rev. B83, 045416 (2011).
    [CrossRef]
  9. J. Chandezon, M. T. Dupuis, G. Cornet, and D. J. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” Opt. Soc. Am.72, 839–846 (1982).
    [CrossRef]
  10. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt.38, 304–313 (1999).
    [CrossRef]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12, 1068–1076 (1995).
    [CrossRef]
  12. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12, 1077–1086 (1995).
    [CrossRef]
  13. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
    [CrossRef] [PubMed]
  14. M. C. Hutley, Diffraction Gratings (Academic Press, New York, 1982).
  15. N. Bonod, E. Popov, L. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express15, 11427–11432 (2007).
    [CrossRef] [PubMed]
  16. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B54, 6227–6244 (1996).
    [CrossRef]
  17. R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on surface plasmon polariton resonances recorded in different diffracted orders,” J. Mod. Opt.46, 2157–2186 (1999).
  18. G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
    [CrossRef]
  19. I. Dolev, M. Volodarsky, G. Porat, and A. Arie, “Multiple coupling of surface plasmons in quasiperiodic gratings,” Opt. Lett.36, 1584–1586 (2011).
    [CrossRef] [PubMed]
  20. B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, and L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett.98, 201108 (2011).
    [CrossRef]
  21. N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces,” Phys. Rev. Lett.105, 017402 (2010).
    [CrossRef] [PubMed]
  22. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009).
    [CrossRef]
  23. C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B82, 081416(R) (2010).
    [CrossRef]
  24. T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett.104, 113903 (2010).
    [CrossRef] [PubMed]

2012 (1)

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

2011 (4)

N. Rotenberg and J. E. Sipe, “Analytic model of plasmonic coupling: Surface relief gratings,” Phys. Rev. B83, 045416 (2011).
[CrossRef]

W. Wan, Y. Chong, L. Ge, H. Noh, A. Douglas Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science311, 889–892 (2011).
[CrossRef]

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, and L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett.98, 201108 (2011).
[CrossRef]

I. Dolev, M. Volodarsky, G. Porat, and A. Arie, “Multiple coupling of surface plasmons in quasiperiodic gratings,” Opt. Lett.36, 1584–1586 (2011).
[CrossRef] [PubMed]

2010 (5)

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces,” Phys. Rev. Lett.105, 017402 (2010).
[CrossRef] [PubMed]

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B82, 081416(R) (2010).
[CrossRef]

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett.104, 113903 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
[CrossRef]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

2009 (2)

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009).
[CrossRef]

G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
[CrossRef]

2007 (1)

1999 (3)

L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt.38, 304–313 (1999).
[CrossRef]

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on surface plasmon polariton resonances recorded in different diffracted orders,” J. Mod. Opt.46, 2157–2186 (1999).

J. M. Fraser, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, “Quantum interference in electron-hole generation in noncentrosymmetric semiconductors,” Phys. Rev. Lett.83, 4192–4195 (1999).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36–42 (1997).
[CrossRef]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B54, 6227–6244 (1996).
[CrossRef]

1995 (2)

1982 (1)

J. Chandezon, M. T. Dupuis, G. Cornet, and D. J. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” Opt. Soc. Am.72, 839–846 (1982).
[CrossRef]

Arie, A.

Baets, R.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B54, 6227–6244 (1996).
[CrossRef]

Betz, M.

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces,” Phys. Rev. Lett.105, 017402 (2010).
[CrossRef] [PubMed]

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B82, 081416(R) (2010).
[CrossRef]

Bonod, N.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Brinkmeyer, E.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. Douglas Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science311, 889–892 (2011).
[CrossRef]

Carras, M.

G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
[CrossRef]

Cesario, J.

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, and L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett.98, 201108 (2011).
[CrossRef]

Chandezon, J.

L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt.38, 304–313 (1999).
[CrossRef]

J. Chandezon, M. T. Dupuis, G. Cornet, and D. J. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” Opt. Soc. Am.72, 839–846 (1982).
[CrossRef]

Chernov, B.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
[CrossRef]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. Douglas Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science311, 889–892 (2011).
[CrossRef]

Cornet, G.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. J. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” Opt. Soc. Am.72, 839–846 (1982).
[CrossRef]

De Rossi, A.

G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
[CrossRef]

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Doerr, C. R.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Dolev, I.

Douglas Stone, A.

W. Wan, Y. Chong, L. Ge, H. Noh, A. Douglas Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science311, 889–892 (2011).
[CrossRef]

Dupuis, M. T.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. J. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” Opt. Soc. Am.72, 839–846 (1982).
[CrossRef]

Eich, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Fan, S.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Fraser, J. M.

J. M. Fraser, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, “Quantum interference in electron-hole generation in noncentrosymmetric semiconductors,” Phys. Rev. Lett.83, 4192–4195 (1999).
[CrossRef]

Freude, W.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Garcia, M.

G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
[CrossRef]

Gaylord, T. K.

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. Douglas Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science311, 889–892 (2011).
[CrossRef]

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
[CrossRef]

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett.104, 113903 (2010).
[CrossRef] [PubMed]

Granet, G.

Grann, E. B.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36–42 (1997).
[CrossRef]

Heberle, A. P.

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett.104, 113903 (2010).
[CrossRef] [PubMed]

Hibbins, A. P.

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on surface plasmon polariton resonances recorded in different diffracted orders,” J. Mod. Opt.46, 2157–2186 (1999).

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Academic Press, New York, 1982).

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Jalas, D.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Kinzel, J. B.

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B82, 081416(R) (2010).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B54, 6227–6244 (1996).
[CrossRef]

Krause, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Krenner, H. J.

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B82, 081416(R) (2010).
[CrossRef]

Kuipers, L.

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, and L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett.98, 201108 (2011).
[CrossRef]

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

le Feber, B.

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, and L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett.98, 201108 (2011).
[CrossRef]

Li, L.

Lippitz, M.

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett.104, 113903 (2010).
[CrossRef] [PubMed]

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
[CrossRef]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
[CrossRef]

Maisons, G.

G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
[CrossRef]

Marcadet, X.

G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
[CrossRef]

Maystre, D. J.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. J. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” Opt. Soc. Am.72, 839–846 (1982).
[CrossRef]

Melloni, A.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Moharam, M. G.

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Neumann, J.

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B82, 081416(R) (2010).
[CrossRef]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. Douglas Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science311, 889–892 (2011).
[CrossRef]

Norlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
[CrossRef]

Novotny, L.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009).
[CrossRef]

Palomba, S.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009).
[CrossRef]

Parillaud, O.

G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
[CrossRef]

Petrov, A.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Plumey, J.-P.

Pommet, D. A.

Popov, E.

Popovic, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Porat, G.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B54, 6227–6244 (1996).
[CrossRef]

Quidant, R.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons, edited by G. Hohler, (Springer, Berlin, 1988).

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Renger, J.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009).
[CrossRef]

Renner, H.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Rotenberg, N.

N. Rotenberg and J. E. Sipe, “Analytic model of plasmonic coupling: Surface relief gratings,” Phys. Rev. B83, 045416 (2011).
[CrossRef]

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, and L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett.98, 201108 (2011).
[CrossRef]

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces,” Phys. Rev. Lett.105, 017402 (2010).
[CrossRef] [PubMed]

Ruppert, C.

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B82, 081416(R) (2010).
[CrossRef]

Sambles, J. R.

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on surface plasmon polariton resonances recorded in different diffracted orders,” J. Mod. Opt.46, 2157–2186 (1999).

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B54, 6227–6244 (1996).
[CrossRef]

Shkrebtii, A. I.

J. M. Fraser, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, “Quantum interference in electron-hole generation in noncentrosymmetric semiconductors,” Phys. Rev. Lett.83, 4192–4195 (1999).
[CrossRef]

Simozrag, B.

G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
[CrossRef]

Sipe, J. E.

N. Rotenberg and J. E. Sipe, “Analytic model of plasmonic coupling: Surface relief gratings,” Phys. Rev. B83, 045416 (2011).
[CrossRef]

J. M. Fraser, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, “Quantum interference in electron-hole generation in noncentrosymmetric semiconductors,” Phys. Rev. Lett.83, 4192–4195 (1999).
[CrossRef]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Stockman, M. I.

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett.104, 113903 (2010).
[CrossRef] [PubMed]

Utikal, T.

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett.104, 113903 (2010).
[CrossRef] [PubMed]

van Driel, H. M.

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces,” Phys. Rev. Lett.105, 017402 (2010).
[CrossRef] [PubMed]

J. M. Fraser, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, “Quantum interference in electron-hole generation in noncentrosymmetric semiconductors,” Phys. Rev. Lett.83, 4192–4195 (1999).
[CrossRef]

van Hulst, N.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009).
[CrossRef]

Van Thourhout, D.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Vanwolleghem, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Volodarsky, M.

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. Douglas Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science311, 889–892 (2011).
[CrossRef]

Watts, R. A.

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on surface plasmon polariton resonances recorded in different diffracted orders,” J. Mod. Opt.46, 2157–2186 (1999).

Wixforth, A.

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B82, 081416(R) (2010).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Yu, Z.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Zeijlemaker, H.

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, and L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett.98, 201108 (2011).
[CrossRef]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Maisons, M. Carras, M. Garcia, O. Parillaud, B. Simozrag, X. Marcadet, and A. De Rossi, “Substrate emitiing index coupled quantum cascade lasers using biperiodic top metal gratings,” Appl. Phys. Lett.94, 151104 (2009).
[CrossRef]

B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg, and L. Kuipers, “Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation,” Appl. Phys. Lett.98, 201108 (2011).
[CrossRef]

J. Mod. Opt. (1)

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on surface plasmon polariton resonances recorded in different diffracted orders,” J. Mod. Opt.46, 2157–2186 (1999).

J. Opt. Soc. Am. A (2)

Nat. Materials (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Norlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials9, 707–715 (2010).
[CrossRef]

Nature Photon. (1)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon.4, 182–187 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Soc. Am. (1)

J. Chandezon, M. T. Dupuis, G. Cornet, and D. J. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” Opt. Soc. Am.72, 839–846 (1982).
[CrossRef]

Phys. Rev. B (3)

N. Rotenberg and J. E. Sipe, “Analytic model of plasmonic coupling: Surface relief gratings,” Phys. Rev. B83, 045416 (2011).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B54, 6227–6244 (1996).
[CrossRef]

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B82, 081416(R) (2010).
[CrossRef]

Phys. Rev. Lett. (4)

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett.104, 113903 (2010).
[CrossRef] [PubMed]

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces,” Phys. Rev. Lett.105, 017402 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009).
[CrossRef]

J. M. Fraser, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, “Quantum interference in electron-hole generation in noncentrosymmetric semiconductors,” Phys. Rev. Lett.83, 4192–4195 (1999).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36–42 (1997).
[CrossRef]

Science (2)

W. Wan, Y. Chong, L. Ge, H. Noh, A. Douglas Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science311, 889–892 (2011).
[CrossRef]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on Nonreciprocal light propagation in a silicon photonic circuit,” Science335, 38 (2012).
[CrossRef] [PubMed]

Other (3)

M. C. Hutley, Diffraction Gratings (Academic Press, New York, 1982).

H. Raether, Surface Plasmons, edited by G. Hohler, (Springer, Berlin, 1988).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Grating mediated resonant coupling. A schematic of the process in (a) k-space and (b) real-space, showing the coupling between free-space radiation and a SPP mode. (c) The specular reflection as a function of angle of incidence for the lower pathway shown in (a), showing first order plasmonic coupling (sharp dip) near −16.7 degrees. (d) The different reflected orders as functions of the angle of incidence for the longer period grating (upper pathway from (a)), which show second order plasmonic coupling at the same angle of incidence.

Fig. 2
Fig. 2

Double harmonic plasmonic coupling. (a) Reflection spectra for the different diffracted orders of a double harmonic grating. (b) The corresponding absorption spectrum for this grating, exhibiting a clear plasmonic absorption resonance near −16.7 degrees. The peak absorption into the plasmonic mode, ΔA, is shown with respect to the ambient background absorption of the grating (horizontal dashed line).

Fig. 3
Fig. 3

Phase dependent resonant coupling. (a) Absorption spectra for negative incidence angles for the cases of maximum (φ = −92°) and minimum (φ = 88°) coupling, corresponding to points 1 and 4 in part (c). The inset shows that, in the region near the angle of optimal plasmonic coupling, for φ = 88°, only 5 × 10−8 of the energy couples to the SPP mode. (b), The absorption spectra for both positive and negative angles of incidence for φ = 88°, corresponding to points 3 and 4 in part (c), showing that only light that is incident with positive angles couples to SPPs. (c), The energy absorbed into the plasmonic mode as a function of the relative phase of the grating components. (d), Schematic representations of points 14 of (c), where points 1 and 4 corresponds to the situation shown in Fig. 1(a). All situations include diffracted beams which are omitted for clarity.

Fig. 4
Fig. 4

The (a) 0- and (b) −1-order reflection spectra for both positive and negative incidence when the relative phase of the grating components is 88 degrees, corresponding to cases 3 and 4 of Fig. 3(c) and (d). Although the plasmonic coupling of the two cases differ by 6 orders of magnitude, their 0-order spectra are identical while only the −1-order spectra for positive incidence shows a significant plasmonic feature.

Fig. 5
Fig. 5

Dependence of the plasmonic absorption on the grating amplitudes. ΔA as a function of phase for both positive and negative angles of incidence for a2G = 5, 10, 20 and 30 nm. The corresponding aG amplitudes are 90, 126, 174, and 208 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k f = k i + m G ,
h ( y ) = p h p G e i p G y ,
h ( y ) = a G 2 cos ( G y + φ G ) + a 2 G 2 cos ( 2 G y + φ 2 G ) ,
φ = φ 2 G 2 φ G ,
A = 1 n R ( n ) ,

Metrics