Abstract

By means of a metal opto-acoustic transducer we generate quasi-longitudinal and quasi-transverse picosecond strain pulses in a (311)-GaAs substrate and monitor their propagation by picosecond acoustic interferometry. By probing at the sample side opposite to the transducer the signals related to the compressive and shear strain pulses can be separated in time. In addition to conventional monitoring of the reflected probe light intensity we monitor also the polarization rotation of the optical probe beam. This polarimetric technique results in improved sensitivity of detection and provides comprehensive information about the elasto-optical anisotropy. The experimental observations are in a good agreement with a theoretical analysis.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984).
    [CrossRef]
  2. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986).
    [CrossRef] [PubMed]
  3. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun.60(1-2), 55–58 (1986).
    [CrossRef]
  4. H. Lin, R. Stoner, H. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69(7), 3816–3822 (1991).
    [CrossRef]
  5. O. B. Wright, “Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics,” J. Appl. Phys.71(4), 1617–1629 (1992).
    [CrossRef]
  6. K. E. O’Hara, X. Hu, and D. G. Cahill, “Characterization of nanostructured metal films by picosecond acoustics and interferometry,” J. Appl. Phys.90(9), 4852–4858 (2001).
    [CrossRef]
  7. O. Wright, B. Perrin, O. Matsuda, and V. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B64(8), 081202 (2001).
    [CrossRef]
  8. R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).
  9. R. Cote and A. Devos, “Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics,” Rev. Sci. Instrum.76(5), 053906 (2005).
    [CrossRef]
  10. J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
    [CrossRef]
  11. P. Emery and A. Devos, “Acoustic attenuation measurements in transparent materials in the hypersonic range by picosecond ultrasonics,” Appl. Phys. Lett.89(19), 191904 (2006).
    [CrossRef]
  12. D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
    [CrossRef]
  13. P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
    [CrossRef]
  14. E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
    [CrossRef]
  15. C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
    [CrossRef]
  16. L. J. Shelton, F. Yang, W. K. Ford, and H. J. Maris, “Picosecond ultrasonic measurement of the velocity of phonons in water,” Phys. Status Solidi242(7), 1379–1382 (2005) (b).
    [CrossRef]
  17. T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett.102(10), 107402 (2009).
    [CrossRef] [PubMed]
  18. A. A. Maznev, K. J. Manke, C. Klieber, K. A. Nelson, S. H. Baek, and C. B. Eom, “Coherent Brillouin spectroscopy in a strongly scattering liquid by picosecond ultrasonics,” Opt. Lett.36(15), 2925–2927 (2011).
    [CrossRef] [PubMed]
  19. C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
    [CrossRef]
  20. M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
    [CrossRef]
  21. T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics,” Phys. Rev. B76(2), 024311 (2007).
    [CrossRef]
  22. O. Matsuda and O. Wright, “Theory of detection of shear strain pulses with laser picosecond acoustics,” Anal. Sci.17, S216–S218 (2001).
  23. O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett.93(9), 095501 (2004).
    [CrossRef] [PubMed]
  24. T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
    [CrossRef]
  25. O. Matsuda, O. Wright, D. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B77(22), 224110 (2008).
    [CrossRef]
  26. Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009).
    [CrossRef]
  27. D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
    [CrossRef]
  28. D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010).
    [CrossRef] [PubMed]
  29. S. A. Akmanov and V. E. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp.35(3), 153–191 (1992).
    [CrossRef]
  30. O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B Condens. Matter49(14), 9985–9988 (1994).
    [CrossRef] [PubMed]
  31. G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B Condens. Matter49(21), 15046–15054 (1994).
    [CrossRef] [PubMed]
  32. T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B67(20), 205421 (2003).
    [CrossRef]
  33. W. Chen, H. Maris, Z. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B70(3), 687–698 (1994).
    [CrossRef]
  34. Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993).
    [CrossRef]
  35. The FFT spectra are obtained in the time window of 0.5 ns starting at tp + 0.1 ns in order to exclude the time interval, in which the strain pulse is being reflected at the GaAs open surface with a phase shift.
  36. A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett.97(3), 037401 (2006).
    [CrossRef] [PubMed]
  37. CRC Handbook of Chemistry and Physics ed. by W.M. Haynes, XCIV Edition. (CRC, 2012) Section 14: Geophysics, Astronomy, and Acoustics; Speed of Sound in Various Media.
  38. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices. (Oxford University, 1985).
  39. O. Madelung, Semiconductors: Data Handbook. (Springer, 2004).
  40. S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys.58(3), R1–R29 (1985).
    [CrossRef]
  41. The behavior of the Brillouin signal around tp is determined by the phaseφωp. In the case of an anti-symmetric strain pulse described by the derivative of a Gaussian function with negligible after-pulse ringing we may assume φωp=0 and the Brillouin signals are maximum at t = tp. If the shape of the strain pulse is more complicated the behavior around tp may differ from the considered simple case as observed in Ref. [7].
  42. H.-Y. Hao and H. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B64(6), 064302 (2001).
    [CrossRef]
  43. M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
    [CrossRef]
  44. L. D. Landau and E. M. Lifshitz, Theory of Elasticity. (Pergamon, 1986).
  45. A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
    [CrossRef] [PubMed]

2013 (2)

M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
[CrossRef]

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

2012 (1)

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

2011 (2)

E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
[CrossRef]

A. A. Maznev, K. J. Manke, C. Klieber, K. A. Nelson, S. H. Baek, and C. B. Eom, “Coherent Brillouin spectroscopy in a strongly scattering liquid by picosecond ultrasonics,” Opt. Lett.36(15), 2925–2927 (2011).
[CrossRef] [PubMed]

2010 (2)

D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010).
[CrossRef] [PubMed]

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

2009 (3)

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett.102(10), 107402 (2009).
[CrossRef] [PubMed]

Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009).
[CrossRef]

2008 (2)

O. Matsuda, O. Wright, D. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B77(22), 224110 (2008).
[CrossRef]

C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
[CrossRef]

2007 (4)

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics,” Phys. Rev. B76(2), 024311 (2007).
[CrossRef]

A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
[CrossRef] [PubMed]

2006 (2)

A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett.97(3), 037401 (2006).
[CrossRef] [PubMed]

P. Emery and A. Devos, “Acoustic attenuation measurements in transparent materials in the hypersonic range by picosecond ultrasonics,” Appl. Phys. Lett.89(19), 191904 (2006).
[CrossRef]

2005 (4)

L. J. Shelton, F. Yang, W. K. Ford, and H. J. Maris, “Picosecond ultrasonic measurement of the velocity of phonons in water,” Phys. Status Solidi242(7), 1379–1382 (2005) (b).
[CrossRef]

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

R. Cote and A. Devos, “Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics,” Rev. Sci. Instrum.76(5), 053906 (2005).
[CrossRef]

J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
[CrossRef]

2004 (1)

O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett.93(9), 095501 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B67(20), 205421 (2003).
[CrossRef]

2001 (4)

O. Matsuda and O. Wright, “Theory of detection of shear strain pulses with laser picosecond acoustics,” Anal. Sci.17, S216–S218 (2001).

K. E. O’Hara, X. Hu, and D. G. Cahill, “Characterization of nanostructured metal films by picosecond acoustics and interferometry,” J. Appl. Phys.90(9), 4852–4858 (2001).
[CrossRef]

O. Wright, B. Perrin, O. Matsuda, and V. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B64(8), 081202 (2001).
[CrossRef]

H.-Y. Hao and H. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B64(6), 064302 (2001).
[CrossRef]

1994 (3)

W. Chen, H. Maris, Z. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B70(3), 687–698 (1994).
[CrossRef]

O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B Condens. Matter49(14), 9985–9988 (1994).
[CrossRef] [PubMed]

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B Condens. Matter49(21), 15046–15054 (1994).
[CrossRef] [PubMed]

1993 (1)

Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993).
[CrossRef]

1992 (2)

S. A. Akmanov and V. E. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp.35(3), 153–191 (1992).
[CrossRef]

O. B. Wright, “Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics,” J. Appl. Phys.71(4), 1617–1629 (1992).
[CrossRef]

1991 (1)

H. Lin, R. Stoner, H. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69(7), 3816–3822 (1991).
[CrossRef]

1986 (2)

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun.60(1-2), 55–58 (1986).
[CrossRef]

1985 (1)

S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys.58(3), R1–R29 (1985).
[CrossRef]

1984 (1)

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984).
[CrossRef]

Adachi, S.

S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys.58(3), R1–R29 (1985).
[CrossRef]

Akimov, A.

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

Akimov, A. V.

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
[CrossRef] [PubMed]

A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett.97(3), 037401 (2006).
[CrossRef] [PubMed]

Akimov, I. A.

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

Akmanov, S. A.

S. A. Akmanov and V. E. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp.35(3), 153–191 (1992).
[CrossRef]

Andrieu, S.

T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett.102(10), 107402 (2009).
[CrossRef] [PubMed]

Audoin, B.

M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
[CrossRef]

C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
[CrossRef]

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics,” Phys. Rev. B76(2), 024311 (2007).
[CrossRef]

Babilotte, P.

D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010).
[CrossRef] [PubMed]

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

Baek, S. H.

Bayer, M.

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
[CrossRef] [PubMed]

A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett.97(3), 037401 (2006).
[CrossRef] [PubMed]

Belotelov, V. I.

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

Berstermann, T.

A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
[CrossRef] [PubMed]

Blary, K.

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

Bombeck, M.

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

Breteau, J.

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

Breteau, J.-M.

D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010).
[CrossRef] [PubMed]

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

Brüggemann, C.

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

Cahill, D. G.

K. E. O’Hara, X. Hu, and D. G. Cahill, “Characterization of nanostructured metal films by picosecond acoustics and interferometry,” J. Appl. Phys.90(9), 4852–4858 (2001).
[CrossRef]

Campion, R.

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

Cardona, M.

Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993).
[CrossRef]

Cerullo, G.

E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
[CrossRef]

Chanseau, C.

M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
[CrossRef]

Chen, W.

W. Chen, H. Maris, Z. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B70(3), 687–698 (1994).
[CrossRef]

Chigarev, N.

C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
[CrossRef]

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics,” Phys. Rev. B76(2), 024311 (2007).
[CrossRef]

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

Chollet, C.

M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
[CrossRef]

Chyi, J.-I.

Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009).
[CrossRef]

Cote, R.

R. Cote and A. Devos, “Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics,” Rev. Sci. Instrum.76(5), 053906 (2005).
[CrossRef]

Dehoux, T.

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics,” Phys. Rev. B76(2), 024311 (2007).
[CrossRef]

Devos, A.

P. Emery and A. Devos, “Acoustic attenuation measurements in transparent materials in the hypersonic range by picosecond ultrasonics,” Appl. Phys. Lett.89(19), 191904 (2006).
[CrossRef]

R. Cote and A. Devos, “Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics,” Rev. Sci. Instrum.76(5), 053906 (2005).
[CrossRef]

Dijkhuis, J. I.

A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
[CrossRef] [PubMed]

Ducousso, M.

M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
[CrossRef]

C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
[CrossRef]

Durrieu, M.

C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
[CrossRef]

Durrieu, M.-C.

M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
[CrossRef]

Edely, M.

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

Emery, P.

P. Emery and A. Devos, “Acoustic attenuation measurements in transparent materials in the hypersonic range by picosecond ultrasonics,” Appl. Phys. Lett.89(19), 191904 (2006).
[CrossRef]

Eom, C. B.

Ferretti, M.

E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
[CrossRef]

Ford, W. K.

L. J. Shelton, F. Yang, W. K. Ford, and H. J. Maris, “Picosecond ultrasonic measurement of the velocity of phonons in water,” Phys. Status Solidi242(7), 1379–1382 (2005) (b).
[CrossRef]

Forget, G.

C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
[CrossRef]

Foxon, C.

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

Foxon, C. T.

A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett.97(3), 037401 (2006).
[CrossRef] [PubMed]

Furdyna, J. K.

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

Glavin, B. A.

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

Gopal, A. V.

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

Gougeon, S.

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

Grahn, H. T.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun.60(1-2), 55–58 (1986).
[CrossRef]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

Guillemot, F.

C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
[CrossRef]

Gusev, V.

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010).
[CrossRef] [PubMed]

O. Matsuda, O. Wright, D. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B77(22), 224110 (2008).
[CrossRef]

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

O. Wright, B. Perrin, O. Matsuda, and V. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B64(8), 081202 (2001).
[CrossRef]

Gusev, V. E.

O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett.93(9), 095501 (2004).
[CrossRef] [PubMed]

S. A. Akmanov and V. E. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp.35(3), 153–191 (1992).
[CrossRef]

Hao, H.-Y.

H.-Y. Hao and H. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B64(6), 064302 (2001).
[CrossRef]

Hashimoto, Y.

J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
[CrossRef]

Hauser, J.

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984).
[CrossRef]

Hu, X.

K. E. O’Hara, X. Hu, and D. G. Cahill, “Characterization of nanostructured metal films by picosecond acoustics and interferometry,” J. Appl. Phys.90(9), 4852–4858 (2001).
[CrossRef]

Hurley, D.

O. Matsuda, O. Wright, D. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B77(22), 224110 (2008).
[CrossRef]

Hurley, D. H.

O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett.93(9), 095501 (2004).
[CrossRef] [PubMed]

Jäger, J.

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

Jäger, J. V.

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

Jho, Y.

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

Kasture, S.

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

Kent, A.

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

Kim, C.

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

Kim, D.

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

Klieber, C.

A. A. Maznev, K. J. Manke, C. Klieber, K. A. Nelson, S. H. Baek, and C. B. Eom, “Coherent Brillouin spectroscopy in a strongly scattering liquid by picosecond ultrasonics,” Opt. Lett.36(15), 2925–2927 (2011).
[CrossRef] [PubMed]

T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett.102(10), 107402 (2009).
[CrossRef] [PubMed]

Ko, T.-S.

Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009).
[CrossRef]

Kono, J.

J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
[CrossRef]

Kouyaté, M.

Kuo, H.-C.

Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009).
[CrossRef]

Lin, H.

H. Lin, R. Stoner, H. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69(7), 3816–3822 (1991).
[CrossRef]

Linnik, T.

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

Liu, R.

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

Liu, X.

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

Lu, T.-C.

Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009).
[CrossRef]

Manke, K. J.

Maris, H.

H.-Y. Hao and H. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B64(6), 064302 (2001).
[CrossRef]

W. Chen, H. Maris, Z. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B70(3), 687–698 (1994).
[CrossRef]

H. Lin, R. Stoner, H. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69(7), 3816–3822 (1991).
[CrossRef]

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984).
[CrossRef]

Maris, H. J.

L. J. Shelton, F. Yang, W. K. Ford, and H. J. Maris, “Picosecond ultrasonic measurement of the velocity of phonons in water,” Phys. Status Solidi242(7), 1379–1382 (2005) (b).
[CrossRef]

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B Condens. Matter49(21), 15046–15054 (1994).
[CrossRef] [PubMed]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun.60(1-2), 55–58 (1986).
[CrossRef]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

Matsuda, O.

O. Matsuda, O. Wright, D. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B77(22), 224110 (2008).
[CrossRef]

O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett.93(9), 095501 (2004).
[CrossRef] [PubMed]

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B67(20), 205421 (2003).
[CrossRef]

O. Wright, B. Perrin, O. Matsuda, and V. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B64(8), 081202 (2001).
[CrossRef]

O. Matsuda and O. Wright, “Theory of detection of shear strain pulses with laser picosecond acoustics,” Anal. Sci.17, S216–S218 (2001).

Maznev, A. A.

Mechri, C.

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

Morosov, E.

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

Moss, D.

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

Mounier, D.

D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010).
[CrossRef] [PubMed]

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

Munekata, H.

J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
[CrossRef]

Nelson, K. A.

A. A. Maznev, K. J. Manke, C. Klieber, K. A. Nelson, S. H. Baek, and C. B. Eom, “Coherent Brillouin spectroscopy in a strongly scattering liquid by picosecond ultrasonics,” Opt. Lett.36(15), 2925–2927 (2011).
[CrossRef] [PubMed]

T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett.102(10), 107402 (2009).
[CrossRef] [PubMed]

Notzel, R.

Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993).
[CrossRef]

Novikov, S.

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

O’Hara, K. E.

K. E. O’Hara, X. Hu, and D. G. Cahill, “Characterization of nanostructured metal films by picosecond acoustics and interferometry,” J. Appl. Phys.90(9), 4852–4858 (2001).
[CrossRef]

Oh, E.

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

Oiwa, A.

J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
[CrossRef]

Ortolani, M.

E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
[CrossRef]

Perrin, B.

O. Wright, B. Perrin, O. Matsuda, and V. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B64(8), 081202 (2001).
[CrossRef]

Pezeril, T.

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett.102(10), 107402 (2009).
[CrossRef] [PubMed]

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

Pézeril, T.

Picart, P.

D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010).
[CrossRef] [PubMed]

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

Ploog, K.

Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993).
[CrossRef]

Polli, D.

E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
[CrossRef]

Pontecorvo, E.

E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
[CrossRef]

Popovic, Z. V.

Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993).
[CrossRef]

Rossignol, C.

M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
[CrossRef]

C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
[CrossRef]

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics,” Phys. Rev. B76(2), 024311 (2007).
[CrossRef]

Ruello, P.

D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010).
[CrossRef] [PubMed]

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

Ruf, T.

Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993).
[CrossRef]

Ruocco, G.

E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
[CrossRef]

Saito, T.

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B67(20), 205421 (2003).
[CrossRef]

Sanders, G.

J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
[CrossRef]

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

Scherbakov, A. V.

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
[CrossRef] [PubMed]

A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett.97(3), 037401 (2006).
[CrossRef] [PubMed]

Scopigno, T.

E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
[CrossRef]

Shelton, L. J.

L. J. Shelton, F. Yang, W. K. Ford, and H. J. Maris, “Picosecond ultrasonic measurement of the velocity of phonons in water,” Phys. Status Solidi242(7), 1379–1382 (2005) (b).
[CrossRef]

Shimizu, K.

O. Matsuda, O. Wright, D. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B77(22), 224110 (2008).
[CrossRef]

O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett.93(9), 095501 (2004).
[CrossRef] [PubMed]

Spitzer, J.

Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993).
[CrossRef]

Staddon, C.

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

Stanton, C.

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
[CrossRef]

Stoner, R.

H. Lin, R. Stoner, H. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69(7), 3816–3822 (1991).
[CrossRef]

Strait, J.

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984).
[CrossRef]

Sun, C.-K.

Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009).
[CrossRef]

Tamura, S.-I.

W. Chen, H. Maris, Z. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B70(3), 687–698 (1994).
[CrossRef]

Tas, G.

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B Condens. Matter49(21), 15046–15054 (1994).
[CrossRef] [PubMed]

Tauc, J.

H. Lin, R. Stoner, H. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69(7), 3816–3822 (1991).
[CrossRef]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun.60(1-2), 55–58 (1986).
[CrossRef]

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984).
[CrossRef]

Thomsen, C.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun.60(1-2), 55–58 (1986).
[CrossRef]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984).
[CrossRef]

van Capel, P. J. S.

A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
[CrossRef] [PubMed]

Vardeny, Z.

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984).
[CrossRef]

Vaudel, G.

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express18(7), 6767–6778 (2010).
[CrossRef] [PubMed]

Vengurlekar, A. S.

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

Wang, J.

J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
[CrossRef]

Wasilewski, Z.

W. Chen, H. Maris, Z. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B70(3), 687–698 (1994).
[CrossRef]

Wen, Y.-C.

Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009).
[CrossRef]

Wright, O.

O. Matsuda, O. Wright, D. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B77(22), 224110 (2008).
[CrossRef]

O. Wright, B. Perrin, O. Matsuda, and V. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B64(8), 081202 (2001).
[CrossRef]

O. Matsuda and O. Wright, “Theory of detection of shear strain pulses with laser picosecond acoustics,” Anal. Sci.17, S216–S218 (2001).

Wright, O. B.

O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett.93(9), 095501 (2004).
[CrossRef] [PubMed]

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B67(20), 205421 (2003).
[CrossRef]

O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B Condens. Matter49(14), 9985–9988 (1994).
[CrossRef] [PubMed]

O. B. Wright, “Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics,” J. Appl. Phys.71(4), 1617–1629 (1992).
[CrossRef]

Yahng, J.

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

Yakovlev, D. R.

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
[CrossRef] [PubMed]

A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett.97(3), 037401 (2006).
[CrossRef] [PubMed]

Yang, F.

L. J. Shelton, F. Yang, W. K. Ford, and H. J. Maris, “Picosecond ultrasonic measurement of the velocity of phonons in water,” Phys. Status Solidi242(7), 1379–1382 (2005) (b).
[CrossRef]

Yee, K.

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

Zainal, N.

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

Zouani, O. E.-F.

M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
[CrossRef]

Anal. Sci. (1)

O. Matsuda and O. Wright, “Theory of detection of shear strain pulses with laser picosecond acoustics,” Anal. Sci.17, S216–S218 (2001).

Appl. Phys. Lett. (4)

C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. Durrieu, “In Vitro picosecond ultrasonics in a single cell,” Appl. Phys. Lett.93(12), 123901 (2008).
[CrossRef]

P. Emery and A. Devos, “Acoustic attenuation measurements in transparent materials in the hypersonic range by picosecond ultrasonics,” Appl. Phys. Lett.89(19), 191904 (2006).
[CrossRef]

E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach,” Appl. Phys. Lett.98(1), 011901 (2011).
[CrossRef]

C. Brüggemann, J. Jäger, B. A. Glavin, V. I. Belotelov, I. A. Akimov, S. Kasture, A. V. Gopal, A. S. Vengurlekar, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Studying periodic nanostructures by probing the in-sample optical far-field using coherent phonons,” Appl. Phys. Lett.101(24), 243117 (2012).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

M. Ducousso, O. E.-F. Zouani, C. Chanseau, C. Chollet, C. Rossignol, B. Audoin, and M.-C. Durrieu, “Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics,” Eur. Phys. J. Appl. Phys.61(1), 11201 (2013).
[CrossRef]

J. Appl. Phys. (4)

S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys.58(3), R1–R29 (1985).
[CrossRef]

H. Lin, R. Stoner, H. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys.69(7), 3816–3822 (1991).
[CrossRef]

O. B. Wright, “Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics,” J. Appl. Phys.71(4), 1617–1629 (1992).
[CrossRef]

K. E. O’Hara, X. Hu, and D. G. Cahill, “Characterization of nanostructured metal films by picosecond acoustics and interferometry,” J. Appl. Phys.90(9), 4852–4858 (2001).
[CrossRef]

J. Phys. Conf. Ser. (1)

D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys. Conf. Ser.92(1), 012179 (2007).
[CrossRef]

J. Phys. D (1)

D. Moss, A. Akimov, S. Novikov, R. Campion, C. Staddon, N. Zainal, C. Foxon, and A. Kent, “Elasto-optical properties of zinc-blende (cubic) GaN measured by picosecond acoustics,” J. Phys. D42(11), 115412 (2009).
[CrossRef]

Opt. Commun. (1)

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Picosecond interferometric technique for study of phonons in the brillouin frequency range,” Opt. Commun.60(1-2), 55–58 (1986).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Philos. Mag. B (1)

W. Chen, H. Maris, Z. Wasilewski, and S.-I. Tamura, “Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K,” Philos. Mag. B70(3), 687–698 (1994).
[CrossRef]

Phys. Rev. B (12)

Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog, “Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction,” Phys. Rev. B48(3), 1659–1664 (1993).
[CrossRef]

T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics,” Phys. Rev. B76(2), 024311 (2007).
[CrossRef]

H.-Y. Hao and H. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B64(6), 064302 (2001).
[CrossRef]

M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga, Mn) As,” Phys. Rev. B87(6), 060302 (2013).
[CrossRef]

T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B67(20), 205421 (2003).
[CrossRef]

J. Wang, Y. Hashimoto, J. Kono, A. Oiwa, H. Munekata, G. Sanders, and C. Stanton, “Propagating coherent acoustic phonon wave packets in InxMn1−xAs/GaSb,” Phys. Rev. B72(15), 153311 (2005).
[CrossRef]

O. Wright, B. Perrin, O. Matsuda, and V. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B64(8), 081202 (2001).
[CrossRef]

R. Liu, G. Sanders, C. Stanton, C. Kim, J. Yahng, Y. Jho, K. Yee, E. Oh, and D. Kim, “Femtosecond pump-probe spectroscopy of propagating coherent acoustic phonons in InxGa1−xN/GaN heterostructures,” Phys. Rev. B72(19), 195335 (2005).

P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B81(24), 245207 (2010).
[CrossRef]

T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B75(17), 174307 (2007).
[CrossRef]

O. Matsuda, O. Wright, D. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B77(22), 224110 (2008).
[CrossRef]

Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, “Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling,” Phys. Rev. B80(19), 195201 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter (3)

O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B Condens. Matter49(14), 9985–9988 (1994).
[CrossRef] [PubMed]

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B Condens. Matter49(21), 15046–15054 (1994).
[CrossRef] [PubMed]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

C. Thomsen, J. Strait, Z. Vardeny, H. Maris, J. Tauc, and J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett.53(10), 989–992 (1984).
[CrossRef]

T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett.102(10), 107402 (2009).
[CrossRef] [PubMed]

A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, “Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well,” Phys. Rev. Lett.99(5), 057402 (2007).
[CrossRef] [PubMed]

O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett.93(9), 095501 (2004).
[CrossRef] [PubMed]

A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett.97(3), 037401 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

L. J. Shelton, F. Yang, W. K. Ford, and H. J. Maris, “Picosecond ultrasonic measurement of the velocity of phonons in water,” Phys. Status Solidi242(7), 1379–1382 (2005) (b).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Cote and A. Devos, “Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics,” Rev. Sci. Instrum.76(5), 053906 (2005).
[CrossRef]

Sov. Phys. Usp. (1)

S. A. Akmanov and V. E. Gusev, “Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics,” Sov. Phys. Usp.35(3), 153–191 (1992).
[CrossRef]

Other (6)

CRC Handbook of Chemistry and Physics ed. by W.M. Haynes, XCIV Edition. (CRC, 2012) Section 14: Geophysics, Astronomy, and Acoustics; Speed of Sound in Various Media.

J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices. (Oxford University, 1985).

O. Madelung, Semiconductors: Data Handbook. (Springer, 2004).

The FFT spectra are obtained in the time window of 0.5 ns starting at tp + 0.1 ns in order to exclude the time interval, in which the strain pulse is being reflected at the GaAs open surface with a phase shift.

The behavior of the Brillouin signal around tp is determined by the phaseφωp. In the case of an anti-symmetric strain pulse described by the derivative of a Gaussian function with negligible after-pulse ringing we may assume φωp=0 and the Brillouin signals are maximum at t = tp. If the shape of the strain pulse is more complicated the behavior around tp may differ from the considered simple case as observed in Ref. [7].

L. D. Landau and E. M. Lifshitz, Theory of Elasticity. (Pergamon, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics