Abstract

In this study we present a new measurement technique to investigate the timescales of back side ablation of conductive films, using Molybdenum as an application example from photovoltaics. With ultrashort laser pulses at fluences below 0.6 J/cm2, we ablate the Mo film in the shape of a fully intact Mo ’disc’ from a transparent substrate. By monitoring the time-dependent current flow across a specifically developed test structure, we determine the time required for the lift-off of the disc. This value decreases with increasing laser fluence down to a minimum of 21 ± 2 ns. Furthermore, we record trajectories of the discs using a shadowgraphic setup. Ablated discs escape with a maximum velocity of 150 ± 5 m/s whereas droplets of Mo forming at the center of the disc can reach velocities up to 710 ± 11 m/s.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 3495–3497 (2007).
    [CrossRef] [PubMed]
  2. J. Kleinbauer, D. Eckert, S. Weiler, and D. H. Sutter, “80W ultrafast CPA-free disk laser,” Proc. SPIE6871, 68711B (2008).
    [CrossRef]
  3. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG innoslab fs-amplifier,” Opt. Express17, 12230–12245 (2009).
    [CrossRef] [PubMed]
  4. R. Knappe, T. Herrmann, B. Heinrich, and A. Nebel, “Novel picosecond lasers for fast micro-machining,” in “Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, LIM 2005”, 723–728 (2005).
  5. B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A: Mater. Sci. Process.63, 109–115 (1996).
    [CrossRef]
  6. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14, 2716–2722 (1997).
    [CrossRef]
  7. D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE5339, 49–63 (2004).
    [CrossRef]
  8. A. D. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. Laser Eng.34, 15–45 (2000).
    [CrossRef]
  9. D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2thin films–comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
    [CrossRef]
  10. J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
    [CrossRef]
  11. S. Zoppel, H. Huber, and G. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A: Mater. Sci. Process.89, 161–163 (2007).
    [CrossRef]
  12. H. P. Huber, F. Herrnberger, S. Kery, and S. Zoppel, “Selective structuring of thin-film solar cells by ultrafast laser ablation,” Proc. SPIE6881, 688117 (2008).
    [CrossRef]
  13. H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
    [CrossRef]
  14. G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011).
    [CrossRef]
  15. T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).
  16. A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys.85, 460–465 (1999).
    [CrossRef]
  17. F. J. Mayer and G. E. Busch, “Plasma production by laser-driven explosively heated thin metal films,” J. Appl. Phys.57, 827–829 (1985).
    [CrossRef]
  18. A. B. Bullock, P. R. Bolton, and F. J. Mayer, “Time-integrated reflectivity of laser-induced back-ablated aluminum thin film targets,” J. Appl. Phys.82, 1828–1831 (1997).
    [CrossRef]
  19. S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
    [CrossRef]
  20. S. Ashitkov, M. Agranat, G. Kanel’, P. Komarov, and V. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” JETP Lett.92, 516–520 (2010).
    [CrossRef]
  21. V. Schultze and M. Wagner, “Blow-off of aluminium films,” Appl. Phys. A: Mater. Sci. Process.53, 241–248 (1991).
    [CrossRef]
  22. Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A: Mater. Sci. Process.69, S275–S278 (1999).
    [CrossRef]
  23. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer,” Appl. Surf. Sci.255, 5430–5434 (2009).
    [CrossRef]
  24. K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
    [CrossRef]
  25. D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, “Shadowgraphic imaging of the sub-ps laser-induced forward transfer process,” Appl. Phys. Lett.81, 1594–1596 (2002).
    [CrossRef]
  26. A. Kuznetsov, C. Unger, J. Koch, and B. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A: Mater. Sci. Process.106, 479–487 (2012).
    [CrossRef]
  27. M. Domke, G. Heise, I. Richter, S. Sarrach, and H. P. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Phys. Procedia12, 399–406 (2011).
    [CrossRef]
  28. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012).
    [CrossRef] [PubMed]
  29. M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Procedia39, 717–725 (2012).
    [CrossRef]
  30. M. Domke, S. Rapp, M. Schmidt, and H. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A: Mater. Sci. Process.109, 409–420 (2012).
    [CrossRef]
  31. D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013).
    [CrossRef]
  32. J. M. Liu, “Simple technique for measurements of pulsed gaussian-beam spot sizes,” Opt. Lett.7, 196–198 (1982).
    [CrossRef] [PubMed]
  33. G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012).
    [CrossRef]
  34. A. Michalowski, D. Walter, P. Berger, and F. Dausinger, “Diagnostics of drilling process using ultrashort laser pulses,” in “Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing, LIM 2007”, 563–567 (2007).
  35. D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993).
    [CrossRef]
  36. R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films519, 2907–2913 (2011).
    [CrossRef]
  37. D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press Inc., 1985), chap. VI, pp. 303–313.
  38. K. Maglic, N. Perovic, and G. Vukovic, “Specific heat and electric resistivity of molybdenum between 400 and 2500 K,” High Temp. - High Pressures29, 97–102 (1997).
    [CrossRef]
  39. R. S. Hixson and M. A. Winkler, “Thermophysical properties of molybdenum and rhenium,” Int. J. Thermophys.13, 477–487 (1992).
    [CrossRef]
  40. T. Hüpf, C. Cagran, G. Lohöfer, and G. Pottlacher, “Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W),” J Phys.: Conf. Ser.98, 062002 (2008).
    [CrossRef]
  41. S. Taluts, V. Zinov’yev, V. Polev, and S. Il’inykh, “Thermal diffusivity and conductivity of molybdenum in solid and liquid states.” Phys. Met. Metall.58, 191–194 (1984).
  42. A. Kurichenko, S. Taluts, I. Korshunov, A. Ivlieu, and V. Zinov’ev, “Thermal diffusivity and thermal conductivity of molybdenum and molybdenum-titanium bimetal at high temperatures,” High Temp. - High Pressures21, 437–439 (1989).

2013

D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013).
[CrossRef]

2012

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012).
[CrossRef]

A. Kuznetsov, C. Unger, J. Koch, and B. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A: Mater. Sci. Process.106, 479–487 (2012).
[CrossRef]

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Procedia39, 717–725 (2012).
[CrossRef]

M. Domke, S. Rapp, M. Schmidt, and H. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A: Mater. Sci. Process.109, 409–420 (2012).
[CrossRef]

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012).
[CrossRef] [PubMed]

2011

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011).
[CrossRef]

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films519, 2907–2913 (2011).
[CrossRef]

M. Domke, G. Heise, I. Richter, S. Sarrach, and H. P. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Phys. Procedia12, 399–406 (2011).
[CrossRef]

2010

S. Ashitkov, M. Agranat, G. Kanel’, P. Komarov, and V. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” JETP Lett.92, 516–520 (2010).
[CrossRef]

2009

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer,” Appl. Surf. Sci.255, 5430–5434 (2009).
[CrossRef]

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG innoslab fs-amplifier,” Opt. Express17, 12230–12245 (2009).
[CrossRef] [PubMed]

2008

H. P. Huber, F. Herrnberger, S. Kery, and S. Zoppel, “Selective structuring of thin-film solar cells by ultrafast laser ablation,” Proc. SPIE6881, 688117 (2008).
[CrossRef]

J. Kleinbauer, D. Eckert, S. Weiler, and D. H. Sutter, “80W ultrafast CPA-free disk laser,” Proc. SPIE6871, 68711B (2008).
[CrossRef]

T. Hüpf, C. Cagran, G. Lohöfer, and G. Pottlacher, “Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W),” J Phys.: Conf. Ser.98, 062002 (2008).
[CrossRef]

2007

A. Michalowski, D. Walter, P. Berger, and F. Dausinger, “Diagnostics of drilling process using ultrashort laser pulses,” in “Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing, LIM 2007”, 563–567 (2007).

S. Zoppel, H. Huber, and G. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A: Mater. Sci. Process.89, 161–163 (2007).
[CrossRef]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 3495–3497 (2007).
[CrossRef] [PubMed]

2006

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

2005

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2thin films–comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

R. Knappe, T. Herrmann, B. Heinrich, and A. Nebel, “Novel picosecond lasers for fast micro-machining,” in “Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, LIM 2005”, 723–728 (2005).

2004

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE5339, 49–63 (2004).
[CrossRef]

2002

D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, “Shadowgraphic imaging of the sub-ps laser-induced forward transfer process,” Appl. Phys. Lett.81, 1594–1596 (2002).
[CrossRef]

2000

A. D. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. Laser Eng.34, 15–45 (2000).
[CrossRef]

1999

A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys.85, 460–465 (1999).
[CrossRef]

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A: Mater. Sci. Process.69, S275–S278 (1999).
[CrossRef]

1997

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14, 2716–2722 (1997).
[CrossRef]

A. B. Bullock, P. R. Bolton, and F. J. Mayer, “Time-integrated reflectivity of laser-induced back-ablated aluminum thin film targets,” J. Appl. Phys.82, 1828–1831 (1997).
[CrossRef]

K. Maglic, N. Perovic, and G. Vukovic, “Specific heat and electric resistivity of molybdenum between 400 and 2500 K,” High Temp. - High Pressures29, 97–102 (1997).
[CrossRef]

1996

B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A: Mater. Sci. Process.63, 109–115 (1996).
[CrossRef]

1993

D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993).
[CrossRef]

1992

R. S. Hixson and M. A. Winkler, “Thermophysical properties of molybdenum and rhenium,” Int. J. Thermophys.13, 477–487 (1992).
[CrossRef]

1991

V. Schultze and M. Wagner, “Blow-off of aluminium films,” Appl. Phys. A: Mater. Sci. Process.53, 241–248 (1991).
[CrossRef]

1989

A. Kurichenko, S. Taluts, I. Korshunov, A. Ivlieu, and V. Zinov’ev, “Thermal diffusivity and thermal conductivity of molybdenum and molybdenum-titanium bimetal at high temperatures,” High Temp. - High Pressures21, 437–439 (1989).

1985

F. J. Mayer and G. E. Busch, “Plasma production by laser-driven explosively heated thin metal films,” J. Appl. Phys.57, 827–829 (1985).
[CrossRef]

1984

S. Taluts, V. Zinov’yev, V. Polev, and S. Il’inykh, “Thermal diffusivity and conductivity of molybdenum in solid and liquid states.” Phys. Met. Metall.58, 191–194 (1984).

1982

Agranat, M.

S. Ashitkov, M. Agranat, G. Kanel’, P. Komarov, and V. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” JETP Lett.92, 516–520 (2010).
[CrossRef]

Agranat, M. B.

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

Alloncle, P.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

Ashitkov, S.

S. Ashitkov, M. Agranat, G. Kanel’, P. Komarov, and V. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” JETP Lett.92, 516–520 (2010).
[CrossRef]

Ashitkov, S. I.

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

Avellán, A.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

Axente, E.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

Aziz, M. J.

D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993).
[CrossRef]

Banks, D. P.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

Bartl, D.

D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013).
[CrossRef]

Benfarah, M.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

Berger, P.

A. Michalowski, D. Walter, P. Berger, and F. Dausinger, “Diagnostics of drilling process using ultrashort laser pulses,” in “Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing, LIM 2007”, 563–567 (2007).

Bolton, P. R.

A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys.85, 460–465 (1999).
[CrossRef]

A. B. Bullock, P. R. Bolton, and F. J. Mayer, “Time-integrated reflectivity of laser-induced back-ablated aluminum thin film targets,” J. Appl. Phys.82, 1828–1831 (1997).
[CrossRef]

Breitling, D.

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE5339, 49–63 (2004).
[CrossRef]

Brenning, R.

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

Brunco, D. P.

D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993).
[CrossRef]

Bruneau, S.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

Bullock, A. B.

A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys.85, 460–465 (1999).
[CrossRef]

A. B. Bullock, P. R. Bolton, and F. J. Mayer, “Time-integrated reflectivity of laser-induced back-ablated aluminum thin film targets,” J. Appl. Phys.82, 1828–1831 (1997).
[CrossRef]

Busch, G. E.

F. J. Mayer and G. E. Busch, “Plasma production by laser-driven explosively heated thin metal films,” J. Appl. Phys.57, 827–829 (1985).
[CrossRef]

Cagran, C.

T. Hüpf, C. Cagran, G. Lohöfer, and G. Pottlacher, “Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W),” J Phys.: Conf. Ser.98, 062002 (2008).
[CrossRef]

Chichkov, B.

A. Kuznetsov, C. Unger, J. Koch, and B. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A: Mater. Sci. Process.106, 479–487 (2012).
[CrossRef]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14, 2716–2722 (1997).
[CrossRef]

B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A: Mater. Sci. Process.63, 109–115 (1996).
[CrossRef]

Compaan, A. D.

A. D. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. Laser Eng.34, 15–45 (2000).
[CrossRef]

Coustillier, G.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

Dalibor, T.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

Dausinger, F.

A. Michalowski, D. Walter, P. Berger, and F. Dausinger, “Diagnostics of drilling process using ultrashort laser pulses,” in “Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing, LIM 2007”, 563–567 (2007).

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE5339, 49–63 (2004).
[CrossRef]

Domke, M.

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012).
[CrossRef]

M. Domke, S. Rapp, M. Schmidt, and H. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A: Mater. Sci. Process.109, 409–420 (2012).
[CrossRef]

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Procedia39, 717–725 (2012).
[CrossRef]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012).
[CrossRef] [PubMed]

M. Domke, G. Heise, I. Richter, S. Sarrach, and H. P. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Phys. Procedia12, 399–406 (2011).
[CrossRef]

Eason, R. W.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

Eckert, D.

J. Kleinbauer, D. Eckert, S. Weiler, and D. H. Sutter, “80W ultrafast CPA-free disk laser,” Proc. SPIE6871, 68711B (2008).
[CrossRef]

Eidam, T.

Englmaier, M.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011).
[CrossRef]

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

Fardel, R.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer,” Appl. Surf. Sci.255, 5430–5434 (2009).
[CrossRef]

Fortov, V.

S. Ashitkov, M. Agranat, G. Kanel’, P. Komarov, and V. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” JETP Lett.92, 516–520 (2010).
[CrossRef]

Fortov, V. E.

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

Fotakis, C.

D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, “Shadowgraphic imaging of the sub-ps laser-induced forward transfer process,” Appl. Phys. Lett.81, 1594–1596 (2002).
[CrossRef]

Goodwin, P. M.

D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993).
[CrossRef]

Grivas, C.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

Guillemoles, J.-F.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

Hafner, M.

D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013).
[CrossRef]

Happ, T.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

Heinrich, B.

R. Knappe, T. Herrmann, B. Heinrich, and A. Nebel, “Novel picosecond lasers for fast micro-machining,” in “Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, LIM 2005”, 723–728 (2005).

Heise, G.

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012).
[CrossRef]

M. Domke, G. Heise, I. Richter, S. Sarrach, and H. P. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Phys. Procedia12, 399–406 (2011).
[CrossRef]

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011).
[CrossRef]

Heiß, A.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

Heiss, A.

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

Hellwig, C.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011).
[CrossRef]

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

Hermann, J.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

Herrmann, T.

R. Knappe, T. Herrmann, B. Heinrich, and A. Nebel, “Novel picosecond lasers for fast micro-machining,” in “Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, LIM 2005”, 723–728 (2005).

Herrnberger, F.

H. P. Huber, F. Herrnberger, S. Kery, and S. Zoppel, “Selective structuring of thin-film solar cells by ultrafast laser ablation,” Proc. SPIE6881, 688117 (2008).
[CrossRef]

Hixson, R. S.

R. S. Hixson and M. A. Winkler, “Thermophysical properties of molybdenum and rhenium,” Int. J. Thermophys.13, 477–487 (1992).
[CrossRef]

Höche, T.

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2thin films–comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

Hoffmann, H. D.

Huber, H.

M. Domke, S. Rapp, M. Schmidt, and H. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A: Mater. Sci. Process.109, 409–420 (2012).
[CrossRef]

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Procedia39, 717–725 (2012).
[CrossRef]

S. Zoppel, H. Huber, and G. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A: Mater. Sci. Process.89, 161–163 (2007).
[CrossRef]

Huber, H. P.

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012).
[CrossRef]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012).
[CrossRef] [PubMed]

M. Domke, G. Heise, I. Richter, S. Sarrach, and H. P. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Phys. Procedia12, 399–406 (2011).
[CrossRef]

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011).
[CrossRef]

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

H. P. Huber, F. Herrnberger, S. Kery, and S. Zoppel, “Selective structuring of thin-film solar cells by ultrafast laser ablation,” Proc. SPIE6881, 688117 (2008).
[CrossRef]

Hunter, W. R.

D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press Inc., 1985), chap. VI, pp. 303–313.

Hüpf, T.

T. Hüpf, C. Cagran, G. Lohöfer, and G. Pottlacher, “Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W),” J Phys.: Conf. Ser.98, 062002 (2008).
[CrossRef]

Il’inykh, S.

S. Taluts, V. Zinov’yev, V. Polev, and S. Il’inykh, “Thermal diffusivity and conductivity of molybdenum in solid and liquid states.” Phys. Met. Metall.58, 191–194 (1984).

Inogamov, N. A.

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

Itina, T.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

Ivlieu, A.

A. Kurichenko, S. Taluts, I. Korshunov, A. Ivlieu, and V. Zinov’ev, “Thermal diffusivity and thermal conductivity of molybdenum and molybdenum-titanium bimetal at high temperatures,” High Temp. - High Pressures21, 437–439 (1989).

Jacobs, H.

Johs, B. D.

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films519, 2907–2913 (2011).
[CrossRef]

Jost, S.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

Kanel, G. I.

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

Kanel’, G.

S. Ashitkov, M. Agranat, G. Kanel’, P. Komarov, and V. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” JETP Lett.92, 516–520 (2010).
[CrossRef]

Karaiskou, A.

D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, “Shadowgraphic imaging of the sub-ps laser-induced forward transfer process,” Appl. Phys. Lett.81, 1594–1596 (2002).
[CrossRef]

Karg, F.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

Kaur, K. S.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

Kemnitzer, M.

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

Kery, S.

H. P. Huber, F. Herrnberger, S. Kery, and S. Zoppel, “Selective structuring of thin-film solar cells by ultrafast laser ablation,” Proc. SPIE6881, 688117 (2008).
[CrossRef]

Kittl, J. A.

D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993).
[CrossRef]

Kleinbauer, J.

J. Kleinbauer, D. Eckert, S. Weiler, and D. H. Sutter, “80W ultrafast CPA-free disk laser,” Proc. SPIE6871, 68711B (2008).
[CrossRef]

Knappe, R.

R. Knappe, T. Herrmann, B. Heinrich, and A. Nebel, “Novel picosecond lasers for fast micro-machining,” in “Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, LIM 2005”, 723–728 (2005).

Koch, J.

A. Kuznetsov, C. Unger, J. Koch, and B. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A: Mater. Sci. Process.106, 479–487 (2012).
[CrossRef]

Komarov, P.

S. Ashitkov, M. Agranat, G. Kanel’, P. Komarov, and V. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” JETP Lett.92, 516–520 (2010).
[CrossRef]

Komarov, P. S.

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

Konrad, J.

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012).
[CrossRef]

Korshunov, I.

A. Kurichenko, S. Taluts, I. Korshunov, A. Ivlieu, and V. Zinov’ev, “Thermal diffusivity and thermal conductivity of molybdenum and molybdenum-titanium bimetal at high temperatures,” High Temp. - High Pressures21, 437–439 (1989).

Kurichenko, A.

A. Kurichenko, S. Taluts, I. Korshunov, A. Ivlieu, and V. Zinov’ev, “Thermal diffusivity and thermal conductivity of molybdenum and molybdenum-titanium bimetal at high temperatures,” High Temp. - High Pressures21, 437–439 (1989).

Kuznetsov, A.

A. Kuznetsov, C. Unger, J. Koch, and B. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A: Mater. Sci. Process.106, 479–487 (2012).
[CrossRef]

Kuznicki, T.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011).
[CrossRef]

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

Letsch, A.

D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013).
[CrossRef]

Limpert, J.

Lippert, T.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer,” Appl. Surf. Sci.255, 5430–5434 (2009).
[CrossRef]

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

Liu, J. M.

Lohöfer, G.

T. Hüpf, C. Cagran, G. Lohöfer, and G. Pottlacher, “Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W),” J Phys.: Conf. Ser.98, 062002 (2008).
[CrossRef]

Lynch, D. W.

D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press Inc., 1985), chap. VI, pp. 303–313.

Maglic, K.

K. Maglic, N. Perovic, and G. Vukovic, “Specific heat and electric resistivity of molybdenum between 400 and 2500 K,” High Temp. - High Pressures29, 97–102 (1997).
[CrossRef]

Mans, T.

Martin, A. C.

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films519, 2907–2913 (2011).
[CrossRef]

Matulionis, I.

A. D. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. Laser Eng.34, 15–45 (2000).
[CrossRef]

Mayer, F. J.

A. B. Bullock, P. R. Bolton, and F. J. Mayer, “Time-integrated reflectivity of laser-induced back-ablated aluminum thin film targets,” J. Appl. Phys.82, 1828–1831 (1997).
[CrossRef]

F. J. Mayer and G. E. Busch, “Plasma production by laser-driven explosively heated thin metal films,” J. Appl. Phys.57, 827–829 (1985).
[CrossRef]

May-Smith, T. C.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

Michalowski, A.

D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013).
[CrossRef]

A. Michalowski, D. Walter, P. Berger, and F. Dausinger, “Diagnostics of drilling process using ultrashort laser pulses,” in “Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing, LIM 2007”, 563–567 (2007).

Momma, C.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14, 2716–2722 (1997).
[CrossRef]

B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A: Mater. Sci. Process.63, 109–115 (1996).
[CrossRef]

Nagel, M.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer,” Appl. Surf. Sci.255, 5430–5434 (2009).
[CrossRef]

Nakade, S.

A. D. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. Laser Eng.34, 15–45 (2000).
[CrossRef]

Nakata, Y.

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A: Mater. Sci. Process.69, S275–S278 (1999).
[CrossRef]

Nebel, A.

R. Knappe, T. Herrmann, B. Heinrich, and A. Nebel, “Novel picosecond lasers for fast micro-machining,” in “Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, LIM 2005”, 723–728 (2005).

Niesen, T.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

Nolte, S.

D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013).
[CrossRef]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14, 2716–2722 (1997).
[CrossRef]

B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A: Mater. Sci. Process.63, 109–115 (1996).
[CrossRef]

Nüesch, F.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer,” Appl. Surf. Sci.255, 5430–5434 (2009).
[CrossRef]

Okada, T.

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A: Mater. Sci. Process.69, S275–S278 (1999).
[CrossRef]

Oleynik, I. I.

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

Otis, C. E.

D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993).
[CrossRef]

Palm, J.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

Papazoglou, D. G.

D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, “Shadowgraphic imaging of the sub-ps laser-induced forward transfer process,” Appl. Phys. Lett.81, 1594–1596 (2002).
[CrossRef]

Perovic, N.

K. Maglic, N. Perovic, and G. Vukovic, “Specific heat and electric resistivity of molybdenum between 400 and 2500 K,” High Temp. - High Pressures29, 97–102 (1997).
[CrossRef]

Polev, V.

S. Taluts, V. Zinov’yev, V. Polev, and S. Il’inykh, “Thermal diffusivity and conductivity of molybdenum in solid and liquid states.” Phys. Met. Metall.58, 191–194 (1984).

Poprawe, R.

Pottlacher, G.

T. Hüpf, C. Cagran, G. Lohöfer, and G. Pottlacher, “Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W),” J Phys.: Conf. Ser.98, 062002 (2008).
[CrossRef]

Rapp, S.

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012).
[CrossRef] [PubMed]

M. Domke, S. Rapp, M. Schmidt, and H. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A: Mater. Sci. Process.109, 409–420 (2012).
[CrossRef]

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Procedia39, 717–725 (2012).
[CrossRef]

Reider, G.

S. Zoppel, H. Huber, and G. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A: Mater. Sci. Process.89, 161–163 (2007).
[CrossRef]

Richter, I.

M. Domke, G. Heise, I. Richter, S. Sarrach, and H. P. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Phys. Procedia12, 399–406 (2011).
[CrossRef]

Röser, F.

Rotarius, G.

Rothhardt, J.

Ruf, A.

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE5339, 49–63 (2004).
[CrossRef]

Russbueldt, P.

Ruthe, D.

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2thin films–comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

Sarrach, S.

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012).
[CrossRef]

M. Domke, G. Heise, I. Richter, S. Sarrach, and H. P. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Phys. Procedia12, 399–406 (2011).
[CrossRef]

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011).
[CrossRef]

Schimpf, D.

Schmidt, M.

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012).
[CrossRef] [PubMed]

M. Domke, S. Rapp, M. Schmidt, and H. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A: Mater. Sci. Process.109, 409–420 (2012).
[CrossRef]

Schmidt, O.

Schultze, V.

V. Schultze and M. Wagner, “Blow-off of aluminium films,” Appl. Phys. A: Mater. Sci. Process.53, 241–248 (1991).
[CrossRef]

Sotrop, J.

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012).
[CrossRef]

Sutter, D. H.

J. Kleinbauer, D. Eckert, S. Weiler, and D. H. Sutter, “80W ultrafast CPA-free disk laser,” Proc. SPIE6871, 68711B (2008).
[CrossRef]

Synowicki, R. A.

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films519, 2907–2913 (2011).
[CrossRef]

Taluts, S.

A. Kurichenko, S. Taluts, I. Korshunov, A. Ivlieu, and V. Zinov’ev, “Thermal diffusivity and thermal conductivity of molybdenum and molybdenum-titanium bimetal at high temperatures,” High Temp. - High Pressures21, 437–439 (1989).

S. Taluts, V. Zinov’yev, V. Polev, and S. Il’inykh, “Thermal diffusivity and conductivity of molybdenum in solid and liquid states.” Phys. Met. Metall.58, 191–194 (1984).

Thompson, M. O.

D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993).
[CrossRef]

Tünnermann, A.

D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013).
[CrossRef]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 3495–3497 (2007).
[CrossRef] [PubMed]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14, 2716–2722 (1997).
[CrossRef]

B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A: Mater. Sci. Process.63, 109–115 (1996).
[CrossRef]

Unger, C.

A. Kuznetsov, C. Unger, J. Koch, and B. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A: Mater. Sci. Process.106, 479–487 (2012).
[CrossRef]

Visbeck, S.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

Vogt, H.

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

Von Alvensleben, F.

B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A: Mater. Sci. Process.63, 109–115 (1996).
[CrossRef]

Vukovic, G.

K. Maglic, N. Perovic, and G. Vukovic, “Specific heat and electric resistivity of molybdenum between 400 and 2500 K,” High Temp. - High Pressures29, 97–102 (1997).
[CrossRef]

Wagner, M.

V. Schultze and M. Wagner, “Blow-off of aluminium films,” Appl. Phys. A: Mater. Sci. Process.53, 241–248 (1991).
[CrossRef]

Walter, D.

A. Michalowski, D. Walter, P. Berger, and F. Dausinger, “Diagnostics of drilling process using ultrashort laser pulses,” in “Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing, LIM 2007”, 563–567 (2007).

Weiler, S.

J. Kleinbauer, D. Eckert, S. Weiler, and D. H. Sutter, “80W ultrafast CPA-free disk laser,” Proc. SPIE6871, 68711B (2008).
[CrossRef]

Weitenberg, J.

Wellegehausen, B.

Welling, H.

Winkler, M. A.

R. S. Hixson and M. A. Winkler, “Thermophysical properties of molybdenum and rhenium,” Int. J. Thermophys.13, 477–487 (1992).
[CrossRef]

Wokaun, A.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer,” Appl. Surf. Sci.255, 5430–5434 (2009).
[CrossRef]

Zergioti, I.

D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, “Shadowgraphic imaging of the sub-ps laser-induced forward transfer process,” Appl. Phys. Lett.81, 1594–1596 (2002).
[CrossRef]

Zhakhovsky, V. V.

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

Zimmer, K.

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2thin films–comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

Zinov’ev, V.

A. Kurichenko, S. Taluts, I. Korshunov, A. Ivlieu, and V. Zinov’ev, “Thermal diffusivity and thermal conductivity of molybdenum and molybdenum-titanium bimetal at high temperatures,” High Temp. - High Pressures21, 437–439 (1989).

Zinov’yev, V.

S. Taluts, V. Zinov’yev, V. Polev, and S. Il’inykh, “Thermal diffusivity and conductivity of molybdenum in solid and liquid states.” Phys. Met. Metall.58, 191–194 (1984).

Zoppel, S.

H. P. Huber, F. Herrnberger, S. Kery, and S. Zoppel, “Selective structuring of thin-film solar cells by ultrafast laser ablation,” Proc. SPIE6881, 688117 (2008).
[CrossRef]

S. Zoppel, H. Huber, and G. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A: Mater. Sci. Process.89, 161–163 (2007).
[CrossRef]

AIP Conf. Proc.

S. I. Ashitkov, N. A. Inogamov, P. S. Komarov, V. V. Zhakhovsky, I. I. Oleynik, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc.1464, 120–125 (2012).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process.

V. Schultze and M. Wagner, “Blow-off of aluminium films,” Appl. Phys. A: Mater. Sci. Process.53, 241–248 (1991).
[CrossRef]

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys. A: Mater. Sci. Process.69, S275–S278 (1999).
[CrossRef]

S. Zoppel, H. Huber, and G. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A: Mater. Sci. Process.89, 161–163 (2007).
[CrossRef]

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys. A: Mater. Sci. Process.102, 173–178 (2011).
[CrossRef]

A. Kuznetsov, C. Unger, J. Koch, and B. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A: Mater. Sci. Process.106, 479–487 (2012).
[CrossRef]

M. Domke, S. Rapp, M. Schmidt, and H. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A: Mater. Sci. Process.109, 409–420 (2012).
[CrossRef]

D. Bartl, A. Michalowski, M. Hafner, A. Letsch, S. Nolte, and A. Tünnermann, “Time-resolved study of back side ablated molybdenum thin films by ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process.110, 227–233 (2013).
[CrossRef]

B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A: Mater. Sci. Process.63, 109–115 (1996).
[CrossRef]

Appl. Phys. Lett.

D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, “Shadowgraphic imaging of the sub-ps laser-induced forward transfer process,” Appl. Phys. Lett.81, 1594–1596 (2002).
[CrossRef]

Appl. Surf. Sci.

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2thin films–comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer,” Appl. Surf. Sci.255, 5430–5434 (2009).
[CrossRef]

High Temp. - High Pressures

A. Kurichenko, S. Taluts, I. Korshunov, A. Ivlieu, and V. Zinov’ev, “Thermal diffusivity and thermal conductivity of molybdenum and molybdenum-titanium bimetal at high temperatures,” High Temp. - High Pressures21, 437–439 (1989).

K. Maglic, N. Perovic, and G. Vukovic, “Specific heat and electric resistivity of molybdenum between 400 and 2500 K,” High Temp. - High Pressures29, 97–102 (1997).
[CrossRef]

Int. J. Thermophys.

R. S. Hixson and M. A. Winkler, “Thermophysical properties of molybdenum and rhenium,” Int. J. Thermophys.13, 477–487 (1992).
[CrossRef]

J Phys.: Conf. Ser.

T. Hüpf, C. Cagran, G. Lohöfer, and G. Pottlacher, “Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W),” J Phys.: Conf. Ser.98, 062002 (2008).
[CrossRef]

J. Appl. Phys.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys.105, 113119 (2009).
[CrossRef]

A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys.85, 460–465 (1999).
[CrossRef]

F. J. Mayer and G. E. Busch, “Plasma production by laser-driven explosively heated thin metal films,” J. Appl. Phys.57, 827–829 (1985).
[CrossRef]

A. B. Bullock, P. R. Bolton, and F. J. Mayer, “Time-integrated reflectivity of laser-induced back-ablated aluminum thin film targets,” J. Appl. Phys.82, 1828–1831 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D: Appl. Phys.39, 453 (2006).
[CrossRef]

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D: Appl. Phys.45, 315303 (2012).
[CrossRef]

JETP Lett.

S. Ashitkov, M. Agranat, G. Kanel’, P. Komarov, and V. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” JETP Lett.92, 516–520 (2010).
[CrossRef]

Opt. Express

Opt. Laser Eng.

A. D. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. Laser Eng.34, 15–45 (2000).
[CrossRef]

Opt. Lett.

Phys. Met. Metall.

S. Taluts, V. Zinov’yev, V. Polev, and S. Il’inykh, “Thermal diffusivity and conductivity of molybdenum in solid and liquid states.” Phys. Met. Metall.58, 191–194 (1984).

Phys. Procedia

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Procedia39, 717–725 (2012).
[CrossRef]

M. Domke, G. Heise, I. Richter, S. Sarrach, and H. P. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Phys. Procedia12, 399–406 (2011).
[CrossRef]

Proc. SPIE

J. Kleinbauer, D. Eckert, S. Weiler, and D. H. Sutter, “80W ultrafast CPA-free disk laser,” Proc. SPIE6871, 68711B (2008).
[CrossRef]

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE5339, 49–63 (2004).
[CrossRef]

H. P. Huber, F. Herrnberger, S. Kery, and S. Zoppel, “Selective structuring of thin-film solar cells by ultrafast laser ablation,” Proc. SPIE6881, 688117 (2008).
[CrossRef]

H. P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, and J. Palm, “High speed structuring of CIS thin-film solar cells with picosecond laser ablation,” Proc. SPIE7203, 72030R (2009).
[CrossRef]

Proceedings of the 26th EUPVSEC

T. Dalibor, S. Jost, H. Vogt, A. Heiß, S. Visbeck, T. Happ, J. Palm, A. Avellán, T. Niesen, and F. Karg, “Towards module efficiencies of 16% with an improved CIGSSe device design,” in “Proceedings of the 26th EUPVSEC”, 2407–2411 (2011).

Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing, LIM 2007

A. Michalowski, D. Walter, P. Berger, and F. Dausinger, “Diagnostics of drilling process using ultrashort laser pulses,” in “Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing, LIM 2007”, 563–567 (2007).

Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, LIM 2005

R. Knappe, T. Herrmann, B. Heinrich, and A. Nebel, “Novel picosecond lasers for fast micro-machining,” in “Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, LIM 2005”, 723–728 (2005).

Rev. Sci. Instrum.

D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993).
[CrossRef]

Thin Solid Films

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films519, 2907–2913 (2011).
[CrossRef]

Other

D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press Inc., 1985), chap. VI, pp. 303–313.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simplified experimental setup used for shadowgraphic observations.

Fig. 2
Fig. 2

Circuit diagram of the setup used for electrical measurements.

Fig. 3
Fig. 3

a) Sketch of the test structure scribed into the Mo. The region at the center (red dotted) shows the interrupted scribe. b) Perspective view of the central region highlighted in a). The yellow arrow is pointing to the position where the laser pulse hits the Mo bridge. c) Microscope image of the central region (dash-dotted in b)) after the ablation.

Fig. 4
Fig. 4

Sequence of an ablated Mo disc at different times after the laser pulse (t = 0) for F = 0.23 J/cm2. The position of the Mo surface is highlighted with the white line.

Fig. 5
Fig. 5

Measured positions as a function of the Mo disc for F = 0.18 and 0.23 J/cm2.

Fig. 6
Fig. 6

Electrical measurement data for a fluence of F = 0.39 J/cm2. The time t = 0 refers to the point in time when the pulse hits the sample. a) First shot on test structure. b) Second shot on the same test structure (remaining Mo bridge).

Fig. 7
Fig. 7

Selected examples of measurement data for F = 0.17, 0.22, 0.30, 0.39 and 0.49 J/cm2 (from top to bottom). The time t = 0 refers to the point in time when the pulse hits the sample. The points in time when the observed voltage drop from the intermediate level starts and when it ends are labeled as t1 and t2, respectively. Note that an individual offset was added to the measurement data in y-direction for the sake of readability.

Fig. 8
Fig. 8

Model assumption of the different stages during ablation in cross-sectional view (top). An example of a measured signal (F = 0.3 J/cm2) and the corresponding voltage levels are shown in f). a) Initial state, b) first voltage drop (U1U2) due to heating, c) bulging due to vapor formation, d) voltage drop (U2U3) due to lift-off, e) final state after cool-down.

Fig. 9
Fig. 9

Simulation results for current density (arbitrary units) at the central part of the test structure (refer to Fig. 3). From left to right: a) initial state, b) after heat deposition by the laser pulse, c) after lift-off of the disc, d) final state after cool-down of the bridge.

Tables (3)

Tables Icon

Table 1 Measured velocities of the Mo disc (vd) and fastest droplet (vp) for different fluence values including standard errors of the linear regression.

Tables Icon

Table 2 Measured times between laser pulse (t = 0) and voltage drops. The times ti refer to the point in time when the observed voltage drop from U2 to U3 starts (t1) and when it ends (t2), respectively. See also Fig. 8.

Tables Icon

Table 3 Measured and calculated voltage drops for F = 0.22 J/cm2. Refer to Fig. 8 for labeling of voltages Ui.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ R ( t ) = R D S O U B ( 1 U 0 1 U ( t ) ) .

Metrics