Abstract

The technology of low-loss orientation-patterned gallium arsenide (OP-GaAs) waveguided crystals was developed and realized by reduction of diffraction scattering on the waveguide pattern. The propagation losses in the OP-GaAs waveguide were estimated to be as low as 2.1 dB/cm, thus demonstrating the efficient second harmonic generation at 1621 nm under an external pumping.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel)9(10), 8230–8262 (2009).
    [CrossRef] [PubMed]
  2. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express16(4), 2387–2397 (2008).
    [CrossRef] [PubMed]
  3. M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
    [CrossRef]
  4. C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem.79(21), 8185–8189 (2007).
    [CrossRef] [PubMed]
  5. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
    [CrossRef]
  6. T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013).
    [CrossRef]
  7. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  8. D. V. Petrov, “Nonlinear phase shift by cascaded quasi-phase-matched second harmonic generation,” Opt. Commun.131(1-3), 102–106 (1996).
    [CrossRef]
  9. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997).
    [CrossRef]
  10. F. A. Katsriku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using the finite element method,” IEEE J. Quantum Electron.36, 282–289 (2000).
    [CrossRef]
  11. L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
    [CrossRef]
  12. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett.66(25), 3410–3412 (1995).
    [CrossRef]
  13. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996).
    [CrossRef]
  14. E. U. Rafailov, P. Loza-Alvarez, C. T. A. Brown, W. Sibbett, R. M. De La Rue, P. Millar, D. A. Yanson, J. S. Roberts, and P. A. Houston, “Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal,” Opt. Lett.26(24), 1984–1986 (2001).
    [CrossRef] [PubMed]
  15. D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structured for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron.40(8), 1122–1130 (2004).
    [CrossRef]
  16. S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
    [CrossRef]
  17. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth201-202, 187–193 (1999).
    [CrossRef]
  18. T. Kondo, S. Koh, and R. Ito, “Sublattice reversal epitaxy: a novel technique for fabricating domain-inverted compound semiconductor structures,” Sci. Technol. Mater.1(3), 173–179 (2000).
    [CrossRef]
  19. P. Schunemann, “CdSiP2 and OPGaAs: New nonlinear crystals for the mid-infrared,” in Advances in Optical Materials, OSA Technical Digest (Optical Society of America, 2011), paper AIFA1, (2011).
  20. M. B. Oron, S. Pearl, P. Blau, and S. Shusterman, “Efficient second-harmonic generation and modal dispersion effects in orientation-patterned GaAs waveguides,” Opt. Lett.35(16), 2678–2680 (2010).
    [CrossRef] [PubMed]
  21. S. Strite, D. Biswas, N. S. Kumar, M. Fradkin, and H. Morkoc, “Antiphase domain free growth of GaAs on Ge in GaAs/Ge/GaAs heterostructures,” Appl. Phys. Lett.56(3), 244–246 (1990).
    [CrossRef]
  22. M. B. Oron, S. Shusterman, and P. Blau, “Periodically oriented GaAs templates and waveguide structures for frequency conversion,” Proc. SPIE6875, 68750F, 68750F-12 (2008).
    [CrossRef]
  23. J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quaisi-phase-matched wavelength conversion at 1.55 µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
    [CrossRef]
  24. D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
    [CrossRef]
  25. V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
    [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

2013

T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013).
[CrossRef]

2012

M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
[CrossRef]

2010

2009

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quaisi-phase-matched wavelength conversion at 1.55 µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel)9(10), 8230–8262 (2009).
[CrossRef] [PubMed]

2008

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express16(4), 2387–2397 (2008).
[CrossRef] [PubMed]

M. B. Oron, S. Shusterman, and P. Blau, “Periodically oriented GaAs templates and waveguide structures for frequency conversion,” Proc. SPIE6875, 68750F, 68750F-12 (2008).
[CrossRef]

2007

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem.79(21), 8185–8189 (2007).
[CrossRef] [PubMed]

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

2004

D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
[CrossRef]

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structured for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron.40(8), 1122–1130 (2004).
[CrossRef]

2001

2000

T. Kondo, S. Koh, and R. Ito, “Sublattice reversal epitaxy: a novel technique for fabricating domain-inverted compound semiconductor structures,” Sci. Technol. Mater.1(3), 173–179 (2000).
[CrossRef]

F. A. Katsriku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using the finite element method,” IEEE J. Quantum Electron.36, 282–289 (2000).
[CrossRef]

1999

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth201-202, 187–193 (1999).
[CrossRef]

1998

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

1997

1996

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996).
[CrossRef]

D. V. Petrov, “Nonlinear phase shift by cascaded quasi-phase-matched second harmonic generation,” Opt. Commun.131(1-3), 102–106 (1996).
[CrossRef]

1995

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett.66(25), 3410–3412 (1995).
[CrossRef]

1993

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

1990

S. Strite, D. Biswas, N. S. Kumar, M. Fradkin, and H. Morkoc, “Antiphase domain free growth of GaAs on Ge in GaAs/Ge/GaAs heterostructures,” Appl. Phys. Lett.56(3), 244–246 (1990).
[CrossRef]

Antoniades, N.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996).
[CrossRef]

Artigas, D.

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structured for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron.40(8), 1122–1130 (2004).
[CrossRef]

Balslev-Clausen, D.

Baranov, A. N.

T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013).
[CrossRef]

Bhat, R.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett.66(25), 3410–3412 (1995).
[CrossRef]

Biswas, D.

S. Strite, D. Biswas, N. S. Kumar, M. Fradkin, and H. Morkoc, “Antiphase domain free growth of GaAs on Ge in GaAs/Ge/GaAs heterostructures,” Appl. Phys. Lett.56(3), 244–246 (1990).
[CrossRef]

Blau, P.

M. B. Oron, S. Pearl, P. Blau, and S. Shusterman, “Efficient second-harmonic generation and modal dispersion effects in orientation-patterned GaAs waveguides,” Opt. Lett.35(16), 2678–2680 (2010).
[CrossRef] [PubMed]

M. B. Oron, S. Shusterman, and P. Blau, “Periodically oriented GaAs templates and waveguide structures for frequency conversion,” Proc. SPIE6875, 68750F, 68750F-12 (2008).
[CrossRef]

Brown, C. T. A.

Bryce, A. C.

D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
[CrossRef]

Byer, R. L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Caneau, C.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett.66(25), 3410–3412 (1995).
[CrossRef]

Contag, C. H.

M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
[CrossRef]

De La Rue, R. M.

Deryagin, A. G.

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

Duco Jansen, E.

M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
[CrossRef]

Dudelev, V. V.

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

Ebert, C. B.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth201-202, 187–193 (1999).
[CrossRef]

Eckardt, R. C.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
[CrossRef]

Eliasson, C.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem.79(21), 8185–8189 (2007).
[CrossRef] [PubMed]

Eyres, L. A.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth201-202, 187–193 (1999).
[CrossRef]

Faist, J.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

Fedorova, K. A.

T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013).
[CrossRef]

Feigelson, R. S.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
[CrossRef]

Fejer, M. M.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth201-202, 187–193 (1999).
[CrossRef]

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Fradkin, M.

S. Strite, D. Biswas, N. S. Kumar, M. Fradkin, and H. Morkoc, “Antiphase domain free growth of GaAs on Ge in GaAs/Ge/GaAs heterostructures,” Appl. Phys. Lett.56(3), 244–246 (1990).
[CrossRef]

Gordon, L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
[CrossRef]

Grattan, K. T. V.

F. A. Katsriku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using the finite element method,” IEEE J. Quantum Electron.36, 282–289 (2000).
[CrossRef]

Harris, J. S.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth201-202, 187–193 (1999).
[CrossRef]

Holtz, M.

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

Houston, P. A.

Hugi, A.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

Hutson, M.

M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
[CrossRef]

Ichinose, H.

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

Ishiwada, T.

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

Ito, R.

T. Kondo, S. Koh, and R. Ito, “Sublattice reversal epitaxy: a novel technique for fabricating domain-inverted compound semiconductor structures,” Sci. Technol. Mater.1(3), 173–179 (2000).
[CrossRef]

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997).
[CrossRef]

Iwamoto, C.

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Katsriku, F. A.

F. A. Katsriku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using the finite element method,” IEEE J. Quantum Electron.36, 282–289 (2000).
[CrossRef]

Kirchner, M. S.

Kitamoto, A.

Koh, S.

T. Kondo, S. Koh, and R. Ito, “Sublattice reversal epitaxy: a novel technique for fabricating domain-inverted compound semiconductor structures,” Sci. Technol. Mater.1(3), 173–179 (2000).
[CrossRef]

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

Kondo, T.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quaisi-phase-matched wavelength conversion at 1.55 µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

T. Kondo, S. Koh, and R. Ito, “Sublattice reversal epitaxy: a novel technique for fabricating domain-inverted compound semiconductor structures,” Sci. Technol. Mater.1(3), 173–179 (2000).
[CrossRef]

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997).
[CrossRef]

Koza, M. A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett.66(25), 3410–3412 (1995).
[CrossRef]

Kozub, J. A.

M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
[CrossRef]

Kruczek, T.

T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013).
[CrossRef]

Kuchinskii, V. I.

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
[CrossRef]

Kumar, N. S.

S. Strite, D. Biswas, N. S. Kumar, M. Fradkin, and H. Morkoc, “Antiphase domain free growth of GaAs on Ge in GaAs/Ge/GaAs heterostructures,” Appl. Phys. Lett.56(3), 244–246 (1990).
[CrossRef]

Losev, S. N.

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

Loza-Alvarez, P.

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structured for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron.40(8), 1122–1130 (2004).
[CrossRef]

E. U. Rafailov, P. Loza-Alvarez, C. T. A. Brown, W. Sibbett, R. M. De La Rue, P. Millar, D. A. Yanson, J. S. Roberts, and P. A. Houston, “Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal,” Opt. Lett.26(24), 1984–1986 (2001).
[CrossRef] [PubMed]

Mackanos, M. A.

M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
[CrossRef]

Macleod, N. A.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem.79(21), 8185–8189 (2007).
[CrossRef] [PubMed]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Marsh, J. H.

D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
[CrossRef]

Matousek, P.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem.79(21), 8185–8189 (2007).
[CrossRef] [PubMed]

Matsushita, T.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quaisi-phase-matched wavelength conversion at 1.55 µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

Millar, P.

Morkoc, H.

S. Strite, D. Biswas, N. S. Kumar, M. Fradkin, and H. Morkoc, “Antiphase domain free growth of GaAs on Ge in GaAs/Ge/GaAs heterostructures,” Appl. Phys. Lett.56(3), 244–246 (1990).
[CrossRef]

Narita, W.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quaisi-phase-matched wavelength conversion at 1.55 µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Nikishin, S. A.

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

Ohta, I.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quaisi-phase-matched wavelength conversion at 1.55 µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Oron, M. B.

M. B. Oron, S. Pearl, P. Blau, and S. Shusterman, “Efficient second-harmonic generation and modal dispersion effects in orientation-patterned GaAs waveguides,” Opt. Lett.35(16), 2678–2680 (2010).
[CrossRef] [PubMed]

M. B. Oron, S. Shusterman, and P. Blau, “Periodically oriented GaAs templates and waveguide structures for frequency conversion,” Proc. SPIE6875, 68750F, 68750F-12 (2008).
[CrossRef]

Ota, J.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quaisi-phase-matched wavelength conversion at 1.55 µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Pearl, S.

Petrov, D. V.

D. V. Petrov, “Nonlinear phase shift by cascaded quasi-phase-matched second harmonic generation,” Opt. Commun.131(1-3), 102–106 (1996).
[CrossRef]

Rafailov, E. U.

T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013).
[CrossRef]

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
[CrossRef]

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structured for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron.40(8), 1122–1130 (2004).
[CrossRef]

E. U. Rafailov, P. Loza-Alvarez, C. T. A. Brown, W. Sibbett, R. M. De La Rue, P. Millar, D. A. Yanson, J. S. Roberts, and P. A. Houston, “Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal,” Opt. Lett.26(24), 1984–1986 (2001).
[CrossRef] [PubMed]

Rahman, B. M. A.

F. A. Katsriku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using the finite element method,” IEEE J. Quantum Electron.36, 282–289 (2000).
[CrossRef]

Rajhel, A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996).
[CrossRef]

Roberts, J. S.

Route, R. R.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
[CrossRef]

Sahay, P.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel)9(10), 8230–8262 (2009).
[CrossRef] [PubMed]

Schriver, K. E.

M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
[CrossRef]

Shiraki, Y.

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

Shirane, M.

Shoji, I.

Shusterman, S.

M. B. Oron, S. Pearl, P. Blau, and S. Shusterman, “Efficient second-harmonic generation and modal dispersion effects in orientation-patterned GaAs waveguides,” Opt. Lett.35(16), 2678–2680 (2010).
[CrossRef] [PubMed]

M. B. Oron, S. Shusterman, and P. Blau, “Periodically oriented GaAs templates and waveguide structures for frequency conversion,” Proc. SPIE6875, 68750F, 68750F-12 (2008).
[CrossRef]

Sibbett, W.

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
[CrossRef]

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structured for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron.40(8), 1122–1130 (2004).
[CrossRef]

E. U. Rafailov, P. Loza-Alvarez, C. T. A. Brown, W. Sibbett, R. M. De La Rue, P. Millar, D. A. Yanson, J. S. Roberts, and P. A. Houston, “Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal,” Opt. Lett.26(24), 1984–1986 (2001).
[CrossRef] [PubMed]

Simanovskii, D. M.

M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
[CrossRef]

Sokolovskii, G. S.

T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013).
[CrossRef]

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
[CrossRef]

Strite, S.

S. Strite, D. Biswas, N. S. Kumar, M. Fradkin, and H. Morkoc, “Antiphase domain free growth of GaAs on Ge in GaAs/Ge/GaAs heterostructures,” Appl. Phys. Lett.56(3), 244–246 (1990).
[CrossRef]

Teissier, R.

T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013).
[CrossRef]

Thorpe, M. J.

Usami, T.

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

Wang, C.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel)9(10), 8230–8262 (2009).
[CrossRef] [PubMed]

Woods, G. L.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
[CrossRef]

Yaguichi, H.

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

Yanson, D. A.

D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
[CrossRef]

E. U. Rafailov, P. Loza-Alvarez, C. T. A. Brown, W. Sibbett, R. M. De La Rue, P. Millar, D. A. Yanson, J. S. Roberts, and P. A. Houston, “Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal,” Opt. Lett.26(24), 1984–1986 (2001).
[CrossRef] [PubMed]

Ye, J.

Yoo, S. J. B.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett.66(25), 3410–3412 (1995).
[CrossRef]

Anal. Chem.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem.79(21), 8185–8189 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Kruczek, K. A. Fedorova, G. S. Sokolovskii, R. Teissier, A. N. Baranov, and E. U. Rafailov, “InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm,” Appl. Phys. Lett.102(1), 011124 (2013).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett.66(25), 3410–3412 (1995).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett.68(19), 2609–2611 (1996).
[CrossRef]

S. Strite, D. Biswas, N. S. Kumar, M. Fradkin, and H. Morkoc, “Antiphase domain free growth of GaAs on Ge in GaAs/Ge/GaAs heterostructures,” Appl. Phys. Lett.56(3), 244–246 (1990).
[CrossRef]

Electron. Lett.

L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett.29(22), 1942–1944 (1993).
[CrossRef]

IEEE J. Quantum Electron.

F. A. Katsriku, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of second harmonic generation in optical waveguides using the finite element method,” IEEE J. Quantum Electron.36, 282–289 (2000).
[CrossRef]

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, “Periodically switched nonlinear structured for frequency conversion: theory and experimental demonstration,” IEEE J. Quantum Electron.40(8), 1122–1130 (2004).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. A. Mackanos, D. M. Simanovskii, K. E. Schriver, M. Hutson, C. H. Contag, J. A. Kozub, and E. Duco Jansen, “Pulse-duration-dependent mid-infrared laser ablation for biological applications,” IEEE J. Sel. Top. Quantum Electron.18(4), 1514–1522 (2012).
[CrossRef]

J. Appl. Phys.

D. A. Yanson, E. U. Rafailov, G. S. Sokolovskii, V. I. Kuchinskii, A. C. Bryce, J. H. Marsh, and W. Sibbett, “Self-focussed distributed Bragg reflector laser diodes,” J. Appl. Phys.95(3), 1502–1509 (2004).
[CrossRef]

J. Cryst. Growth

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth201-202, 187–193 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quaisi-phase-matched wavelength conversion at 1.55 µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

S. Koh, T. Kondo, T. Ishiwada, C. Iwamoto, H. Ichinose, H. Yaguichi, T. Usami, Y. Shiraki, and R. Ito, “Sublattice Reversal in GaAs/Si/GaAs (100) Heterostructures by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1493–L1496 (1998).
[CrossRef]

Opt. Commun.

D. V. Petrov, “Nonlinear phase shift by cascaded quasi-phase-matched second harmonic generation,” Opt. Commun.131(1-3), 102–106 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

M. B. Oron, S. Shusterman, and P. Blau, “Periodically oriented GaAs templates and waveguide structures for frequency conversion,” Proc. SPIE6875, 68750F, 68750F-12 (2008).
[CrossRef]

Sci. Technol. Mater.

T. Kondo, S. Koh, and R. Ito, “Sublattice reversal epitaxy: a novel technique for fabricating domain-inverted compound semiconductor structures,” Sci. Technol. Mater.1(3), 173–179 (2000).
[CrossRef]

Semicond. Sci. Technol.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

Sensors (Basel)

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel)9(10), 8230–8262 (2009).
[CrossRef] [PubMed]

Tech. Phys. Lett.

V. V. Dudelev, G. S. Sokolovskii, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, S. A. Nikishin, M. Holtz, E. U. Rafailov, and W. Sibbett, “Phase effects in broad-area heterolasers with curved grooves of distributed feedback grating,” Tech. Phys. Lett.33, 292–293 (2007).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

P. Schunemann, “CdSiP2 and OPGaAs: New nonlinear crystals for the mid-infrared,” in Advances in Optical Materials, OSA Technical Digest (Optical Society of America, 2011), paper AIFA1, (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Profile of the OP-GaAs structure. (b) Calculated diffraction losses of the fundamental TE mode vs composition of the 1μm, 3μm and 6μm-thick AlxGa1-xAs/GaAs waveguide with corrugation depth Δd = 150nm. (c) SEM image of the fabricated OP-GaAs waveguide.

Fig. 2
Fig. 2

(a) Diffraction losses of the fundamental TE mode vs corrugation depth for d = 3μm and d = 6μm for AlxGa1-xAs barriers compositions x = 0.1, x = 0.3 and x = 0.45. (b) Diffraction losses of the different-order modes vs waveguide thickness for Δd = 40nm for x = 0.45 (black) and x = 0.1 (red). The range of possible diffraction losses increasing from the fundamental TE to the higher-order modes is shown in (b) with hatch. Inset: log-scale zoom in.

Fig. 3
Fig. 3

(a) Second harmonic intensity as a function of fundamental input power. Inset: Spectra of the pump and SHG waves. (b) Total insertion loss measured using the cutback method.

Metrics