Abstract

A pump signal based on bipolar pulse coding and single-sideband suppressed-carried (SSB-SC) modulation is proposed for Brillouin optical time-domain analysis (BOTDA) sensors. Making a sequential use of the Brillouin gain and loss spectra, the technique is experimentally validated using bipolar complementary-correlation Golay codes along a 100 km-long fiber and 2 m spatial resolution, fully resolving a 2 m hot-spot at the end of the sensing fiber with no distortion introduced by the decoding algorithm. Experimental results, in good agreement with the theory, indicate that bipolar Golay codes provide a higher signal-to-noise ratio enhancement and stronger robustness to pump depletion in comparison to optimum unipolar pulse codes known for BOTDA sensing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a Distributed Sensing Technique Using Brillouin Scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
    [CrossRef]
  2. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-Assisted Brillouin Distributed Temperature Sensor Over 100 km Featuring 2 m Resolution and 1.2 C Uncertainty,” J. Lightwave Technol.30(8), 1060–1065 (2012).
    [CrossRef]
  3. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010).
    [CrossRef] [PubMed]
  4. M. A. Soto, G. Bolognini, and F. D. Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett.36(2), 232–234 (2011).
    [CrossRef] [PubMed]
  5. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett.35(10), 1503–1505 (2010).
    [CrossRef] [PubMed]
  6. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express18(14), 14878–14892 (2010).
    [CrossRef] [PubMed]
  7. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
    [CrossRef]
  8. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors,” Opt. Express16(23), 19097–19111 (2008).
    [CrossRef] [PubMed]
  9. T. Kawanishi and M. Izutsu, “Linear Single-Sideband Modulation for High-SNR Wavelength Conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
    [CrossRef]
  10. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol.21(9), 094024 (2010).
    [CrossRef]
  11. M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar pulse coding for enhanced performance in Brillouin distributed optical fiber sensors,” Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 84219Y (2012).
    [CrossRef]

2012 (1)

2011 (1)

2010 (4)

2008 (1)

2004 (1)

T. Kawanishi and M. Izutsu, “Linear Single-Sideband Modulation for High-SNR Wavelength Conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
[CrossRef]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a Distributed Sensing Technique Using Brillouin Scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

1989 (1)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
[CrossRef]

Angulo-Vinuesa, X.

Ania-Castañon, J. D.

Bao, X.

Bolognini, G.

Chen, L.

Corredera, P.

Di Pasquale, F.

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
[CrossRef]

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
[CrossRef]

González-Herráez, M.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a Distributed Sensing Technique Using Brillouin Scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Izutsu, M.

T. Kawanishi and M. Izutsu, “Linear Single-Sideband Modulation for High-SNR Wavelength Conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
[CrossRef]

Kawanishi, T.

T. Kawanishi and M. Izutsu, “Linear Single-Sideband Modulation for High-SNR Wavelength Conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
[CrossRef]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a Distributed Sensing Technique Using Brillouin Scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a Distributed Sensing Technique Using Brillouin Scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Li, W.

Liang, H.

Linze, N.

Martin-Lopez, S.

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
[CrossRef]

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
[CrossRef]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
[CrossRef]

Nuño, J.

Pasquale, F. D.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a Distributed Sensing Technique Using Brillouin Scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Sischka, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
[CrossRef]

Soto, M. A.

Takeda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a Distributed Sensing Technique Using Brillouin Scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Thévenaz, L.

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Kawanishi and M. Izutsu, “Linear Single-Sideband Modulation for High-SNR Wavelength Conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
[CrossRef]

J. Lightwave Technol. (3)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol.7(1), 24–38 (1989).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Takeda, and Y. Koyamada, “Development of a Distributed Sensing Technique Using Brillouin Scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-Assisted Brillouin Distributed Temperature Sensor Over 100 km Featuring 2 m Resolution and 1.2 C Uncertainty,” J. Lightwave Technol.30(8), 1060–1065 (2012).
[CrossRef]

Meas. Sci. Technol. (1)

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol.21(9), 094024 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (1)

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar pulse coding for enhanced performance in Brillouin distributed optical fiber sensors,” Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 84219Y (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of the SSB-SC modulation based on bipolar codes for BOTDA sensing.

Fig. 2
Fig. 2

Principle of the SSB-SC modulation to generate a pump signal based on bipolar codes. (a) Spectra of the SSB-SC modulation obtained using a dual-parallel Mach-Zehnder modulator. (b) Example of a single SSB-SC modulated 16-bit bipolar Golay codeword.

Fig. 3
Fig. 3

Experimental setup for BOTDA sensor employing SSB-SC modulation and bipolar codes.

Fig. 4
Fig. 4

Coding gain for both unipolar and bipolar Golay codes in BOTDA sensing.

Fig. 5
Fig. 5

Measurements along 100 km sensing distance using 512-bit bipolar Golay codes and SSB-SC modulation. (a) Decoded BGS vs distance. (b) Respective BFS profile.

Fig. 6
Fig. 6

Measurement of a 2 m-long hot-spot at a sensing distance of ~100 km. The induced temperature variation was 30°C, while the measurement indicates a Brillouin frequency variation of about 31 MHz.

Fig. 7
Fig. 7

Residual pump after propagating along 100 km of fiber, when using (a) bipolar and (b) unipolar Golay codes. The dashed blue lines represent the reference residual power with no SBS interaction, while the solid red lines correspond to the case of maximum SBS gain/loss.

Metrics