Abstract

An optoelectronic oscillator (OEO) with wideband frequency tunability and stable output based on a bandpass microwave photonic filter (MPF) has been proposed and experimentally demonstrated. Realized by cascading a finite impulse response (FIR) filter and an infinite impulse response (IIR) filter together, the tunable bandpass MPF successfully replaces the narrowband electrical bandpass filter in a conventional single-loop OEO and serves as the oscillating frequency selector. The FIR filter is based on a tunable multi-wavelength laser and dispersion compensation fiber (DCF) while the IIR filter is simply based on an optical loop. Utilizing a long length of DCF as the dispersion medium for the FIR filter also provides a long delay line for the OEO feedback cavity and as a result, optical tuning over a wide frequency range can be achieved without sacrificing the quality of the generated signal. By tuning the wavelength spacing of the multi-wavelength laser, the oscillation frequency can be tuned from 6.88 GHz to 12.79 GHz with an average step-size of 0.128 GHz. The maximum frequency drift of the generated 10 GHz signal is observed to be 1.923 kHz over 1 hour and its phase noise reaches the −112 dBc/Hz limit of our measuring equipment at 10 kHz offset frequency.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
    [CrossRef]
  2. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
    [CrossRef]
  3. L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett.15(7), 981–983 (2003).
    [CrossRef]
  4. X. S. Yao, L. Maleki, and D. Eliyahu, “Progress in the opto-electronic oscillator - a ten year anniversary review,” in Proceedings of IEEE MTT-S Internatiomal Microwave Symposium Digest (Fort Worth, TX, 2004), pp. 287–290.
    [CrossRef]
  5. X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron.36(1), 79–84 (2000).
    [CrossRef]
  6. D. Eliyahu, L. Maleki, and Ieee, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Proceedings of IEEE International Frequency Control Symposium & PDA Exhibition Jointly with 17th European Frequency and Time Forum (Tampa, FL. 2003), pp. 405–410.
  7. W. M. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
    [CrossRef]
  8. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express19(7), 5839–5854 (2011).
    [CrossRef] [PubMed]
  9. D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. B. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21(12), 3052–3061 (2003).
    [CrossRef]
  10. A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt.50, 2523–2542 (2003).
  11. K. Volyanskiy, P. Salzenstein, H. Tavernier, M. Pogurmirskiy, Y. K. Chembo, and L. Larger, “Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation,” Opt. Express18(21), 22358–22363 (2010).
    [CrossRef] [PubMed]
  12. I. Ozdur, D. Mandridis, N. Hoghooghi, and P. J. Delfyett, “Low noise optically tunable opto-electronic oscillator with Fabry-Perot etalon,” J. Lightwave Technol.28, 3100–3106 (2010).
  13. S. L. Pan and J. P. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett.35(11), 1911–1913 (2010).
    [CrossRef] [PubMed]
  14. W. Z. Li and J. P. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol.28(18), 2640–2645 (2010).
    [CrossRef]
  15. M. Li, W. Z. Li, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett.24(14), 1251–1253 (2012).
    [CrossRef]
  16. B. Yang, X. F. Jin, X. M. Zhang, S. L. Zheng, H. Chi, and Y. Wang, “A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser,” IEEE Photon. Technol. Lett.24(1), 73–75 (2012).
    [CrossRef]
  17. J. Q. Zhou, S. N. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” J. Lightwave Technol.29(22), 3381–3386 (2011).
    [CrossRef]
  18. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
    [CrossRef]
  19. B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay-line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992).
    [CrossRef]
  20. S. Yamashita and Y. Inoue, “Multiwavelength Er-doped fiber ring laser incorporating highly nonlinear fiber,” Jpn. J. Appl. Phys.44(34), L1080–L1081 (2005).
    [CrossRef]
  21. D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of IEEE International Frequency Control Symposium & PDA Exhibition (New Orleans, LA. 2002), pp. 580–583.
    [CrossRef]
  22. K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol.28(18), 2730–2735 (2010).
    [CrossRef]

2012 (2)

M. Li, W. Z. Li, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett.24(14), 1251–1253 (2012).
[CrossRef]

B. Yang, X. F. Jin, X. M. Zhang, S. L. Zheng, H. Chi, and Y. Wang, “A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser,” IEEE Photon. Technol. Lett.24(1), 73–75 (2012).
[CrossRef]

2011 (2)

2010 (5)

2006 (1)

2005 (2)

S. Yamashita and Y. Inoue, “Multiwavelength Er-doped fiber ring laser incorporating highly nonlinear fiber,” Jpn. J. Appl. Phys.44(34), L1080–L1081 (2005).
[CrossRef]

W. M. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
[CrossRef]

2003 (3)

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt.50, 2523–2542 (2003).

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett.15(7), 981–983 (2003).
[CrossRef]

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. B. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21(12), 3052–3061 (2003).
[CrossRef]

2000 (1)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron.36(1), 79–84 (2000).
[CrossRef]

1996 (2)

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
[CrossRef]

1992 (1)

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay-line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992).
[CrossRef]

Aditya, S.

Adles, E. J.

Aveline, D.

Blasche, G.

W. M. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
[CrossRef]

Capmany, J.

Carter, G. M.

Chembo, Y. K.

Chi, H.

B. Yang, X. F. Jin, X. M. Zhang, S. L. Zheng, H. Chi, and Y. Wang, “A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser,” IEEE Photon. Technol. Lett.24(1), 73–75 (2012).
[CrossRef]

Delfyett, P. J.

Dong, Y.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett.15(7), 981–983 (2003).
[CrossRef]

Eliyahu, D.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of IEEE International Frequency Control Symposium & PDA Exhibition (New Orleans, LA. 2002), pp. 580–583.
[CrossRef]

Fu, S. N.

Gao, Y. Z.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett.15(7), 981–983 (2003).
[CrossRef]

Goodman, J. W.

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay-line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992).
[CrossRef]

Hoghooghi, N.

Horowitz, M.

Huo, L.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett.15(7), 981–983 (2003).
[CrossRef]

Ilchenko, V. S.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt.50, 2523–2542 (2003).

Inoue, Y.

S. Yamashita and Y. Inoue, “Multiwavelength Er-doped fiber ring laser incorporating highly nonlinear fiber,” Jpn. J. Appl. Phys.44(34), L1080–L1081 (2005).
[CrossRef]

Jin, X. F.

B. Yang, X. F. Jin, X. M. Zhang, S. L. Zheng, H. Chi, and Y. Wang, “A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser,” IEEE Photon. Technol. Lett.24(1), 73–75 (2012).
[CrossRef]

Kamran, A.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of IEEE International Frequency Control Symposium & PDA Exhibition (New Orleans, LA. 2002), pp. 580–583.
[CrossRef]

Larger, L.

Lee, K. E. K.

Levy, E. C.

Li, M.

M. Li, W. Z. Li, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett.24(14), 1251–1253 (2012).
[CrossRef]

Li, W. Z.

M. Li, W. Z. Li, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett.24(14), 1251–1253 (2012).
[CrossRef]

W. Z. Li and J. P. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol.28(18), 2640–2645 (2010).
[CrossRef]

Lou, C. Y.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett.15(7), 981–983 (2003).
[CrossRef]

Luan, F.

Maleki, L.

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. B. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21(12), 3052–3061 (2003).
[CrossRef]

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt.50, 2523–2542 (2003).

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron.36(1), 79–84 (2000).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
[CrossRef]

Mandridis, D.

Matsko, A. B.

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. B. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol.21(12), 3052–3061 (2003).
[CrossRef]

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt.50, 2523–2542 (2003).

Menyuk, C. R.

Moslehi, B.

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay-line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992).
[CrossRef]

Okusaga, O.

Ortega, B.

Ozdur, I.

Pan, S. L.

Pastor, D.

Pogurmirskiy, M.

Rubiola, E.

Salzenstein, P.

Sariri, K.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of IEEE International Frequency Control Symposium & PDA Exhibition (New Orleans, LA. 2002), pp. 580–583.
[CrossRef]

Savchenkov, A. A.

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt.50, 2523–2542 (2003).

Shum, P. P.

Strekalov, D.

Tavernier, H.

Thompson, R.

Tokhmakhian, M.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of IEEE International Frequency Control Symposium & PDA Exhibition (New Orleans, LA. 2002), pp. 580–583.
[CrossRef]

Volyanskiy, K.

Wang, Y.

B. Yang, X. F. Jin, X. M. Zhang, S. L. Zheng, H. Chi, and Y. Wang, “A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser,” IEEE Photon. Technol. Lett.24(1), 73–75 (2012).
[CrossRef]

Wong, J. H.

Yamashita, S.

S. Yamashita and Y. Inoue, “Multiwavelength Er-doped fiber ring laser incorporating highly nonlinear fiber,” Jpn. J. Appl. Phys.44(34), L1080–L1081 (2005).
[CrossRef]

Yang, B.

B. Yang, X. F. Jin, X. M. Zhang, S. L. Zheng, H. Chi, and Y. Wang, “A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser,” IEEE Photon. Technol. Lett.24(1), 73–75 (2012).
[CrossRef]

Yao, J. P.

Yao, X. S.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron.36(1), 79–84 (2000).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
[CrossRef]

Yu, N.

Zhang, X. M.

B. Yang, X. F. Jin, X. M. Zhang, S. L. Zheng, H. Chi, and Y. Wang, “A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser,” IEEE Photon. Technol. Lett.24(1), 73–75 (2012).
[CrossRef]

Zheng, S. L.

B. Yang, X. F. Jin, X. M. Zhang, S. L. Zheng, H. Chi, and Y. Wang, “A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser,” IEEE Photon. Technol. Lett.24(1), 73–75 (2012).
[CrossRef]

Zhou, J. Q.

Zhou, W.

Zhou, W. M.

W. M. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron.36(1), 79–84 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett.15(7), 981–983 (2003).
[CrossRef]

M. Li, W. Z. Li, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photon. Technol. Lett.24(14), 1251–1253 (2012).
[CrossRef]

B. Yang, X. F. Jin, X. M. Zhang, S. L. Zheng, H. Chi, and Y. Wang, “A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser,” IEEE Photon. Technol. Lett.24(1), 73–75 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

W. M. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
[CrossRef]

J. Lightwave Technol. (7)

J. Mod. Opt. (1)

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt.50, 2523–2542 (2003).

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. Yamashita and Y. Inoue, “Multiwavelength Er-doped fiber ring laser incorporating highly nonlinear fiber,” Jpn. J. Appl. Phys.44(34), L1080–L1081 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (3)

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of IEEE International Frequency Control Symposium & PDA Exhibition (New Orleans, LA. 2002), pp. 580–583.
[CrossRef]

X. S. Yao, L. Maleki, and D. Eliyahu, “Progress in the opto-electronic oscillator - a ten year anniversary review,” in Proceedings of IEEE MTT-S Internatiomal Microwave Symposium Digest (Fort Worth, TX, 2004), pp. 287–290.
[CrossRef]

D. Eliyahu, L. Maleki, and Ieee, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Proceedings of IEEE International Frequency Control Symposium & PDA Exhibition Jointly with 17th European Frequency and Time Forum (Tampa, FL. 2003), pp. 405–410.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the proposed optoelectronic oscillator. PC: polarization controller; EDF: Erbium-doped fiber; WDM: wavelength division multiplexing; FD-POP:Fourier-domain programmable optical processor; HNLF: highly non-linear fiber; OC: optical coupler; PM: phase modulator; DCF: dispersion-compensation fiber; EDFA: Erbium-doped fiber amplifier; PD: Photodetector; EA: electrical amplifier; SSA: signal source analyzer.

Fig. 2
Fig. 2

The simulated filter responses of (a) the FIR filter; (b) the IIR filter; (c) the MPF and (d) the simulated power spectrum of the generated RF signal.

Fig. 3
Fig. 3

Measured results: (a) the laser output spectrum, resolution bandwidth (RBW) = 0.05 nm; (b) the MPF response, inset: a zoomed-in view of the passband center, span = 2 GHz; (c) the spectrum for the generated 10 GHz RF signal, span = 20 GHz, and RBW = 3 MHz, inset: a zoomed-in view of the spectrum, span = 200 kHz, and RBW = 2 kHz.

Fig. 4
Fig. 4

Frequency tunability of the proposed OEO scheme. (a) Spectra for various generated RF signals, RBW = 1MHz. (b) Correlation of the oscillation frequency and the wavelength spacing.

Fig. 5
Fig. 5

The superposition of spectra measured in 1 hour.

Fig. 6
Fig. 6

The measured phase noise for a generated RF signal at 10.03 GHz. Inset: the spectrum of the 10.03 GHz, span = 500 MHz and RBW = 1 MHz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H 1 ( ω ) { n=1 N [ I n ( λ n )sin( D L 1 λ n 2 ω 2 4πc )cos( ω λ n D L 1 ) ] } 2 + { n=1 N [ I n ( λ n )sin( D L 1 λ n 2 ω 2 4πc )sin( ω λ n D L 1 ) ] } 2 ,
FS R 1 = 1 τ 1 = 1 ΔλD L 1 ,
H 2 ( ω )= κ+( 12κ ) e jω τ 2 1κ e jω τ 2 ,
FS R 2 = 1 τ 2 = c n 2 L 2 ,
H( ω )= H 1 ( ω )· H 2 ( ω ).
V( ω,t )= V in (ω,t) m=1 [ H( ω )G( ω ) ] m e jωm τ 3 = Aexp(jωt) 1H( ω )G( ω ) e jω τ 3 ,
P( ω ) 1 1+ [ H( ω )G( ω ) ] 2 2H( ω )G( ω )cos( ω τ 3 ) .

Metrics