Abstract

We observe that the cascaded typical Y junctions will introduce unwanted periodic fringes over the spectrum in practical systems when they link with multimode waveguides. To solve the problem, we design and experimentally demonstrate a wavelength insensitive multimode interferometer (MMI) based 3-dB splitter which has all the merits of Y-splitters such as polarization insensitivity and ultra-compactness. The splitter has a footprint of 1.5 × 1.8 µm2, nearly one order smaller than the previously reported MMI splitters. The measured excess losses for TE and TM modes at telecom wavelength are as low as −0.11 dB and −0.18 dB respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
    [CrossRef]
  2. T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).
  3. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express16(26), 21456–21461 (2008).
    [CrossRef] [PubMed]
  4. Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013).
    [CrossRef] [PubMed]
  5. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett.17(3), 585–587 (2005).
    [CrossRef]
  6. A. Hosseini, H. Subbaraman, D. Kwong, Y. Zhang, and R. T. Chen, “Optimum access waveguide width for 1 x N multimode interference couplers on silicon nanomembrane,” Opt. Lett.35(17), 2864–2866 (2010).
    [CrossRef] [PubMed]
  7. Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
    [CrossRef]
  8. P. P. Sahu, “Compact multimode interference coupler with tapered waveguide geometry,” Opt. Commun.277(2), 295–301 (2007).
    [CrossRef]
  9. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
    [CrossRef]
  10. R. Ulrich and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Am.68(5), 583–592 (1978).
    [CrossRef]
  11. D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photon. Technol. Lett.18(19), 2017–2019 (2006).
    [CrossRef]
  12. K. S. Chiang and Q. Liu, “Formulae for the design of polarization-insensitive multimode interference couplers,” IEEE Photon. Technol. Lett.23(18), 1277–1279 (2011).
    [CrossRef]

2013 (1)

2012 (2)

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

2011 (1)

K. S. Chiang and Q. Liu, “Formulae for the design of polarization-insensitive multimode interference couplers,” IEEE Photon. Technol. Lett.23(18), 1277–1279 (2011).
[CrossRef]

2010 (2)

2008 (1)

2007 (1)

P. P. Sahu, “Compact multimode interference coupler with tapered waveguide geometry,” Opt. Commun.277(2), 295–301 (2007).
[CrossRef]

2006 (1)

D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photon. Technol. Lett.18(19), 2017–2019 (2006).
[CrossRef]

2005 (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett.17(3), 585–587 (2005).
[CrossRef]

1995 (1)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

1978 (1)

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett.17(3), 585–587 (2005).
[CrossRef]

Baehr-Jones, T.

Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

Chen, R. T.

Chiang, K. S.

K. S. Chiang and Q. Liu, “Formulae for the design of polarization-insensitive multimode interference couplers,” IEEE Photon. Technol. Lett.23(18), 1277–1279 (2011).
[CrossRef]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett.17(3), 585–587 (2005).
[CrossRef]

Dai, D.

D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photon. Technol. Lett.18(19), 2017–2019 (2006).
[CrossRef]

Danziger, S.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).

Fang, Q.

Galland, C.

Gan, F.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

He, S.

D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photon. Technol. Lett.18(19), 2017–2019 (2006).
[CrossRef]

Hochberg, M.

Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013).
[CrossRef] [PubMed]

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

Hosseini, A.

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett.17(3), 585–587 (2005).
[CrossRef]

Kamiya, T.

Kwong, D.

Kwong, D. L.

Li, L.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

Lim, A. E.

Liu, Q.

K. S. Chiang and Q. Liu, “Formulae for the design of polarization-insensitive multimode interference couplers,” IEEE Photon. Technol. Lett.23(18), 1277–1279 (2011).
[CrossRef]

Lo, G. Q.

Lo Guo-Qiang, P.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).

Pang, A.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

Pennings, E.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Pinguet, T.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).

Prather, D.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).

Qiu, C.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

Sahu, P. P.

P. P. Sahu, “Compact multimode interference coupler with tapered waveguide geometry,” Opt. Commun.277(2), 295–301 (2007).
[CrossRef]

Sheng, Z.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

Soldano, L.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Song, J. F.

Subbaraman, H.

Tao, S. H.

Ulrich, R.

Wang, X.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

Wang, Z.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

Wu, A.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett.17(3), 585–587 (2005).
[CrossRef]

Yang, S.

Yu, M. B.

Zhang, Y.

Zou, S.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

IEEE Photon. J. (1)

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss MMI coupler fabricated with CMOS technology,” IEEE Photon. J.4(6), 2272–2277 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett.17(3), 585–587 (2005).
[CrossRef]

D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photon. Technol. Lett.18(19), 2017–2019 (2006).
[CrossRef]

K. S. Chiang and Q. Liu, “Formulae for the design of polarization-insensitive multimode interference couplers,” IEEE Photon. Technol. Lett.23(18), 1277–1279 (2011).
[CrossRef]

J. Lightwave Technol. (1)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

Nature (1)

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).

Opt. Commun. (1)

P. P. Sahu, “Compact multimode interference coupler with tapered waveguide geometry,” Opt. Commun.277(2), 295–301 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The supported modes in 500 nm × 300 nm silicon channel waveguide (a) fundamental TE (b) fundamental TM (c) and (d) higher order hybrid modes.

Fig. 2
Fig. 2

The spectrum of the cascaded Y-junction splitters (a) YI, (b) YII and (c) YIII; (d) The microscope picture of the three types of Y-junction splitters.

Fig. 3
Fig. 3

The E-intensity field distribution for TE and TM polarization (top view) along the multimode section with different width. (a) and (b) for width WM equals to 1.5 µm; (c) and (d) for width WM equals to 1.25 µm; (e) and (f) for width WM equals to 1 µm. (g) The microscope photo of the proposed splitters. Inset: the optical image captured from the output waveguides; (h) The splitter schematic main parameters.

Fig. 4
Fig. 4

(a) TE and TM beating length versus the width of multimode section; (b) The fabrication and loss limitation and the polarization insensitive condition.

Fig. 5
Fig. 5

The normalized spectrum at each output waveguide for (a) TE and (b) TM polarization light from ASE source referring to fiber to fiber coupling loss.

Fig. 6
Fig. 6

The measured insertion loss from the output ports for (a) TE polarization, (b) TM polarization and (c) unpolarized light at 1.55 µm wavelength; (d) The relationship of splitter excess loss versus taper width.

Metrics