Abstract

In this paper, temperature variations are detected thanks to an enhanced nano-optical pyroelectric sensor. Sensing is obtained with the pyroelectric effect of lithium niobate (LN) in which, a suitable air-membrane photonic crystal cavity has been fabricated. The wavelength position of the cavity mode is tuned 11.5 nm for a temperature variation of only 32 °C. These results agree quite well with 3D-FDTD simulations that predict tunability of 12.5 nm for 32 °C. This photonic crystal temperature sensor shows a sensitivity of 0.359 nm/°C for an active length of only ~5.2 μm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Zrenner, “Artificial vision: Solar cells for the blind,” Nat. Photonics6(6), 344–345 (2012).
    [CrossRef]
  2. M. V. Romalis, “Atomic sensors: Chip-scale magnetometers,” Nat. Photonics1(11), 613–614 (2007).
    [CrossRef]
  3. P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, “Near-infrared optical sensors based on single-walled carbon nanotubes,” Nat. Mater.4(1), 86–92 (2005).
    [CrossRef] [PubMed]
  4. J.-L. Kou, S.-J. Qiu, F. Xu, and Y.-Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011).
    [CrossRef] [PubMed]
  5. M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
    [CrossRef]
  6. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt.44(12), 2382–2390 (2005).
    [CrossRef] [PubMed]
  7. W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011).
    [CrossRef] [PubMed]
  8. X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
    [CrossRef]
  9. H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett.21(16), 1136 (2009).
    [CrossRef]
  10. G.-D. Kim, H.-S. Lee, C. H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express18(21), 22215–22221 (2010).
    [CrossRef] [PubMed]
  11. T. Srivastava, R. Das, and R. Jha, “Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide,” Plasmonics8(2), 515–521 (2013).
    [CrossRef]
  12. R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys.49(12), 1335–1386 (1986).
    [CrossRef]
  13. H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express20(19), 20884–20893 (2012).
    [CrossRef] [PubMed]
  14. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
    [CrossRef] [PubMed]
  15. H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, M. Collet, F. I. Baida, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter,” Appl. Phys. Lett.101(15), 151117 (2012).
    [CrossRef]
  16. J. D. Brownridge, “Pyroelectric X-ray generator,” Nature358(6384), 287–288 (1992).
    [CrossRef] [PubMed]
  17. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
    [CrossRef]
  18. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
    [CrossRef]
  19. J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett.96(10), 103111 (2010).
    [CrossRef]
  20. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
  21. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  22. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003).
    [CrossRef] [PubMed]
  23. E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B72(11), 115102 (2005).
    [CrossRef]
  24. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev.6(4), 488–503 (2012).
    [CrossRef]
  25. G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316 (2010).
    [CrossRef]
  26. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
    [CrossRef]
  27. H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010).
    [CrossRef]

2013

T. Srivastava, R. Das, and R. Jha, “Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide,” Plasmonics8(2), 515–521 (2013).
[CrossRef]

2012

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express20(19), 20884–20893 (2012).
[CrossRef] [PubMed]

E. Zrenner, “Artificial vision: Solar cells for the blind,” Nat. Photonics6(6), 344–345 (2012).
[CrossRef]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, M. Collet, F. I. Baida, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter,” Appl. Phys. Lett.101(15), 151117 (2012).
[CrossRef]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

2011

2010

G.-D. Kim, H.-S. Lee, C. H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express18(21), 22215–22221 (2010).
[CrossRef] [PubMed]

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316 (2010).
[CrossRef]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett.96(10), 103111 (2010).
[CrossRef]

2009

H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett.21(16), 1136 (2009).
[CrossRef]

2008

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
[CrossRef]

2007

M. V. Romalis, “Atomic sensors: Chip-scale magnetometers,” Nat. Photonics1(11), 613–614 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).

2006

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

2005

P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, “Near-infrared optical sensors based on single-walled carbon nanotubes,” Nat. Mater.4(1), 86–92 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B72(11), 115102 (2005).
[CrossRef]

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt.44(12), 2382–2390 (2005).
[CrossRef] [PubMed]

2003

1992

J. D. Brownridge, “Pyroelectric X-ray generator,” Nature358(6384), 287–288 (1992).
[CrossRef] [PubMed]

1986

R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys.49(12), 1335–1386 (1986).
[CrossRef]

Amet, J.

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett.96(10), 103111 (2010).
[CrossRef]

Bae, H. K.

Baida, F. I.

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express20(19), 20884–20893 (2012).
[CrossRef] [PubMed]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, M. Collet, F. I. Baida, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter,” Appl. Phys. Lett.101(15), 151117 (2012).
[CrossRef]

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett.96(10), 103111 (2010).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Baik, S.

P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, “Near-infrared optical sensors based on single-walled carbon nanotubes,” Nat. Mater.4(1), 86–92 (2005).
[CrossRef] [PubMed]

Barone, P. W.

P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, “Near-infrared optical sensors based on single-walled carbon nanotubes,” Nat. Mater.4(1), 86–92 (2005).
[CrossRef] [PubMed]

Benchabane, S.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Berková, D.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

Bernal, M.-P.

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, M. Collet, F. I. Baida, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter,” Appl. Phys. Lett.101(15), 151117 (2012).
[CrossRef]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express20(19), 20884–20893 (2012).
[CrossRef] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett.96(10), 103111 (2010).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Bettiol, A. A.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316 (2010).
[CrossRef]

Bittner, P.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

Brownridge, J. D.

J. D. Brownridge, “Pyroelectric X-ray generator,” Nature358(6384), 287–288 (1992).
[CrossRef] [PubMed]

Chomát, M.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

Collet, M.

Courjal, N.

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express20(19), 20884–20893 (2012).
[CrossRef] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, M. Collet, F. I. Baida, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter,” Appl. Phys. Lett.101(15), 151117 (2012).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Ctyroký, J.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

Dahdah, J.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Danner, A. J.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316 (2010).
[CrossRef]

Das, R.

T. Srivastava, R. Das, and R. Jha, “Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide,” Plasmonics8(2), 515–521 (2013).
[CrossRef]

Degl'innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).

Diziain, S.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Dong, X.

Dulkeith, E.

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B72(11), 115102 (2005).
[CrossRef]

Etrich, C.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Feng, X.

Geiss, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Gischkat, T.

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010).
[CrossRef]

Gruson, Y.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).

Guo, J.

Guyot, C.

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express20(19), 20884–20893 (2012).
[CrossRef] [PubMed]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, M. Collet, F. I. Baida, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter,” Appl. Phys. Lett.101(15), 151117 (2012).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Hartung, H.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010).
[CrossRef]

He, S.

Heller, D. A.

P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, “Near-infrared optical sensors based on single-walled carbon nanotubes,” Nat. Mater.4(1), 86–92 (2005).
[CrossRef] [PubMed]

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

Iliew, R.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Jancárek, A.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

Januts, N.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Jha, R.

T. Srivastava, R. Das, and R. Jha, “Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide,” Plasmonics8(2), 515–521 (2013).
[CrossRef]

Jin, S.

Kai, G.

Kanka, J.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

Kim, G. D.

H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett.21(16), 1136 (2009).
[CrossRef]

Kim, G.-D.

Kley, E.-B.

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010).
[CrossRef]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Kou, J.-L.

Laude, V.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Lederer, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Lee, H. S.

H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett.21(16), 1136 (2009).
[CrossRef]

Lee, H.-S.

Lee, S. S.

H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett.21(16), 1136 (2009).
[CrossRef]

Lee, S.-S.

Lee, W.-G.

Li, X.

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
[CrossRef]

Lim, B. T.

Liu, B.

Liu, Y.

Lu, H.

Lu, Y.-Q.

Matejec, V.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B72(11), 115102 (2005).
[CrossRef]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003).
[CrossRef] [PubMed]

Merolla, J.-M.

Moll, N.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Park, C. H.

Pertsch, T.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).

Qian, W.

Qiu, S.-J.

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).

Romalis, M. V.

M. V. Romalis, “Atomic sensors: Chip-scale magnetometers,” Nat. Photonics1(11), 613–614 (2007).
[CrossRef]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Sadani, B.

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Schrempel, F.

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010).
[CrossRef]

Si, G.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316 (2010).
[CrossRef]

Skokánková, J.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

Smith, N.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

Srivastava, T.

T. Srivastava, R. Das, and R. Jha, “Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide,” Plasmonics8(2), 515–521 (2013).
[CrossRef]

Stenger, V.

Strano, M. S.

P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, “Near-infrared optical sensors based on single-walled carbon nanotubes,” Nat. Mater.4(1), 86–92 (2005).
[CrossRef] [PubMed]

Teng, J.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316 (2010).
[CrossRef]

Teo, E. J.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316 (2010).
[CrossRef]

Todorov, F.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

Tünnermann, A.

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010).
[CrossRef]

Ulliac, G.

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012).
[CrossRef] [PubMed]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express20(19), 20884–20893 (2012).
[CrossRef] [PubMed]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, M. Collet, F. I. Baida, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter,” Appl. Phys. Lett.101(15), 151117 (2012).
[CrossRef]

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett.96(10), 103111 (2010).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B72(11), 115102 (2005).
[CrossRef]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003).
[CrossRef] [PubMed]

Wei, H.

Wesch, W.

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010).
[CrossRef]

Whatmore, R. W.

R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys.49(12), 1335–1386 (1986).
[CrossRef]

Xu, F.

Yuan, S.

Zhang, S.

Zhang, W.

Zhang, X.

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
[CrossRef]

Zhang, Z.

Zhao, C.-L.

Zhou, G.

Zrenner, E.

E. Zrenner, “Artificial vision: Solar cells for the blind,” Nat. Photonics6(6), 344–345 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, M. Collet, F. I. Baida, and M.-P. Bernal, “Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter,” Appl. Phys. Lett.101(15), 151117 (2012).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

J. Amet, G. Ulliac, F. I. Baida, and M.-P. Bernal, “Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism,” Appl. Phys. Lett.96(10), 103111 (2010).
[CrossRef]

R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Januts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

H. S. Lee, G. D. Kim, and S. S. Lee, “Temperature compensated glucose sensor exploiting ring resonators,” IEEE Photon. Technol. Lett.21(16), 1136 (2009).
[CrossRef]

J. Micromech. Microeng.

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316 (2010).
[CrossRef]

Laser & Photon. Rev.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

Nat. Mater.

P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, “Near-infrared optical sensors based on single-walled carbon nanotubes,” Nat. Mater.4(1), 86–92 (2005).
[CrossRef] [PubMed]

Nat. Photonics

E. Zrenner, “Artificial vision: Solar cells for the blind,” Nat. Photonics6(6), 344–345 (2012).
[CrossRef]

M. V. Romalis, “Atomic sensors: Chip-scale magnetometers,” Nat. Photonics1(11), 613–614 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).

Nature

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

J. D. Brownridge, “Pyroelectric X-ray generator,” Nature358(6384), 287–288 (1992).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010).
[CrossRef]

Phys. Rev. B

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B72(11), 115102 (2005).
[CrossRef]

Plasmonics

T. Srivastava, R. Das, and R. Jha, “Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide,” Plasmonics8(2), 515–521 (2013).
[CrossRef]

Rep. Prog. Phys.

R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys.49(12), 1335–1386 (1986).
[CrossRef]

Sens. Actuators B Chem.

M. Chomát, J. Čtyroký, D. Berková, V. Matějec, J. Kaňka, J. Skokánková, F. Todorov, A. Jančárek, and P. Bittner, “Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding,” Sens. Actuators B Chem.119(2), 642–650 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of the final device

Fig. 2
Fig. 2

(a) Calculated transmission spectrum of the PhC with the air window (pink solid line) and in the APE waveguide without the air window (blue dotted line) (b)Horizontal and vertical cross section of the electric field distribution at the peak resonance wavelength (λ = 1518 nm) and inside the photonic band gap (λ = 1460 nm) calculated by 3D-FDTD.

Fig. 3
Fig. 3

(a) SEM image of the ridge membrane, (b) Image of the mode at the exit of the membrane at λ = 1550 nm. (c) SEM image of the membrane with the PhC.

Fig. 4
Fig. 4

(a) Fabry-Perot resonance peak obtained by 3D-FDTD simulation of the device and the experimentally measured transmission, (b) experimentally measured transmission spectra of the peak as a function of the temperature, (c) 3D-FDTD simulation transmission spectra of the peak as a function of the temperature

Fig. 5
Fig. 5

Experimental (pink circles) and theoretical (blue squares) plot showing the peak shift as a function of the temperature in the device.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δn= 1 2 n 3 f 3 r 33 E z
E z = 1 ε o ε r pΔT

Metrics