Abstract

An experimental setup is presented to measure and interpret the solid phase crystallization of amorphous silicon thin films on glass at very high temperatures of about 800°C. Molybdenum-SiO2-silicon film stacks were irradiated by a diode laser with a well-shaped top hat profile. From the relevant thermal and optical parameters of the system the temperature evolution can be calculated accurately. A time evolution of the laser power was applied which leads to a temperature constant in time in the center of the sample. Such a process will allow the observation and interpretation of solid phase crystallization in terms of nucleation and growth in further work.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Zhang and M. Wong, “Three-mask polycrystalline silicon TFT with metallic gate and junctions,” IEEE Electron Device Lett. 27(7), 564–566 (2006).
    [Crossref]
  2. A. Aberle, “Progress with polycrystalline silicon thin-film solar cells on glass at UNSW,” J. Cryst. Growth 287(2), 386–390 (2006).
    [Crossref]
  3. N. Sinh, G. Andrä, F. Falk, E. Ose, and J. Bergmann, “Optimization of layered laser crystallization for thin-film crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 295–303 (2002).
    [Crossref]
  4. A. Matsuda, “Microcrystalline silicon. Growth and device application,” J. Non-Cryst. Solids 338-340, 1–12 (2004).
    [Crossref]
  5. G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C 5(10), 3221–3228 (2008).
    [Crossref]
  6. T. Chaki, “Solid-phase-epitaxy – Effects of irradiation, dopant, and pressure,” Phys. Status Solidi A 142(1), 153–166 (1994).
    [Crossref]
  7. C. Spinella, S. Lombardo, and F. Priolo, “Crystal grain nucleation in amorphous silicon,” J. Appl. Phys. 84(10), 5383–5414 (1998).
    [Crossref]
  8. U. Köster, “Crystallization of amorphous silicon films,” Phys. Status Solidi A 48(2), 313–321 (1978).
    [Crossref]
  9. T. Sontheimer, S. Scherf, C. Klimm, C. Becker, and B. Rech, “Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells,” J. Appl. Phys.  110, 063530 (2011).
  10. G. Farhi, M. Aoucher, and T. Mohammed-Brahim, “Study of the solid phase crystallization behavior of amorphous sputtered silicon by X-ray diffraction and electrical measurements,” Sol. Energy Mater. Sol. Cells 72(1-4), 551–558 (2002).
    [Crossref]
  11. Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
    [Crossref]
  12. T. Schmidt, I. Hoeger, A. Gawlik, G. Andrä, and F. Falk, “Solid phase epitaxy of silicon thin films by diode laser irradiation for photovoltaic applications,” Thin Solid Films 520(24), 7087–7092 (2012).
    [Crossref]
  13. G. Olson and J. Roth, “Kinetics of solid phase crystallization in amorphous silicon,” Mater. Sci. Rep. 3(1), 1–77 (1988).
    [Crossref]
  14. G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
    [Crossref]
  15. W. Knaepen, C. Detavernier, R. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon,” Thin Solid Films 516(15), 4946–4952 (2008).
    [Crossref]
  16. Y. Sun, X. Zhang, and C. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Tran. 40(7), 1591–1600 (1997).
    [Crossref]
  17. J. Bergmann, M. Heusinger, G. Andrä, and F. Falk, “Temperature dependent optical properties of amorphous silicon for diode laser crystallization,” Opt. Express 20(S6), A856–A863 (2012).
    [Crossref]
  18. B. T. Barnes, “Optical constants of Inandescent Refractory Metals,” J. Opt. Soc. Am. 56(11), 1546–1549 (1966).
    [Crossref]
  19. E. P. Mikol, “The thermal conductivity of molybdenum over the temperature range 1000-2100°F,” Oak Ridge National Laboratory (1952). http://www.ornl.gov/info/reports/1952/3445603609021.pdf .
  20. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
    [Crossref]
  21. B. Brixner, “Refractive-Index Interpolation for Fused Silica,” J. Opt. Soc. Am. 57(5), 674–676 (1967).
    [Crossref]
  22. Accuratus Corporation, “Fused Silica, SiO2 Glass Properties”. http://accuratus.com/fused.html .
  23. T. A. Redfield and J. H. Hill, “Heat capacity of Molybdenum,” Oak Ridge National Laboratory (1951). http://www.ornl.gov/info/reports/1951/3445603608861.pdf .
  24. International Molybdenum Association, “Molybdenum Properties”. http://www.imoa.info/molybdenum/molybdenum_properties.php .
  25. S. de Unamuno and E. Fogarassy, “A thermal description of the melting of c-silicon and a-silicon under pulsed excimer lasers,” Appl. Surf. Sci. 36(1-4), 1–11 (1989).
    [Crossref]
  26. A. Bensberg, Research and Technology Development, Schott AG (personal communication, 2011).

2012 (3)

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

T. Schmidt, I. Hoeger, A. Gawlik, G. Andrä, and F. Falk, “Solid phase epitaxy of silicon thin films by diode laser irradiation for photovoltaic applications,” Thin Solid Films 520(24), 7087–7092 (2012).
[Crossref]

J. Bergmann, M. Heusinger, G. Andrä, and F. Falk, “Temperature dependent optical properties of amorphous silicon for diode laser crystallization,” Opt. Express 20(S6), A856–A863 (2012).
[Crossref]

2011 (1)

T. Sontheimer, S. Scherf, C. Klimm, C. Becker, and B. Rech, “Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells,” J. Appl. Phys.  110, 063530 (2011).

2010 (1)

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

2008 (2)

W. Knaepen, C. Detavernier, R. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon,” Thin Solid Films 516(15), 4946–4952 (2008).
[Crossref]

G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C 5(10), 3221–3228 (2008).
[Crossref]

2006 (2)

D. Zhang and M. Wong, “Three-mask polycrystalline silicon TFT with metallic gate and junctions,” IEEE Electron Device Lett. 27(7), 564–566 (2006).
[Crossref]

A. Aberle, “Progress with polycrystalline silicon thin-film solar cells on glass at UNSW,” J. Cryst. Growth 287(2), 386–390 (2006).
[Crossref]

2004 (1)

A. Matsuda, “Microcrystalline silicon. Growth and device application,” J. Non-Cryst. Solids 338-340, 1–12 (2004).
[Crossref]

2002 (2)

N. Sinh, G. Andrä, F. Falk, E. Ose, and J. Bergmann, “Optimization of layered laser crystallization for thin-film crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 295–303 (2002).
[Crossref]

G. Farhi, M. Aoucher, and T. Mohammed-Brahim, “Study of the solid phase crystallization behavior of amorphous sputtered silicon by X-ray diffraction and electrical measurements,” Sol. Energy Mater. Sol. Cells 72(1-4), 551–558 (2002).
[Crossref]

1998 (1)

C. Spinella, S. Lombardo, and F. Priolo, “Crystal grain nucleation in amorphous silicon,” J. Appl. Phys. 84(10), 5383–5414 (1998).
[Crossref]

1997 (1)

Y. Sun, X. Zhang, and C. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Tran. 40(7), 1591–1600 (1997).
[Crossref]

1994 (1)

T. Chaki, “Solid-phase-epitaxy – Effects of irradiation, dopant, and pressure,” Phys. Status Solidi A 142(1), 153–166 (1994).
[Crossref]

1989 (1)

S. de Unamuno and E. Fogarassy, “A thermal description of the melting of c-silicon and a-silicon under pulsed excimer lasers,” Appl. Surf. Sci. 36(1-4), 1–11 (1989).
[Crossref]

1988 (1)

G. Olson and J. Roth, “Kinetics of solid phase crystallization in amorphous silicon,” Mater. Sci. Rep. 3(1), 1–77 (1988).
[Crossref]

1983 (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
[Crossref]

1978 (1)

U. Köster, “Crystallization of amorphous silicon films,” Phys. Status Solidi A 48(2), 313–321 (1978).
[Crossref]

1967 (1)

1966 (1)

Aberle, A.

A. Aberle, “Progress with polycrystalline silicon thin-film solar cells on glass at UNSW,” J. Cryst. Growth 287(2), 386–390 (2006).
[Crossref]

Andrä, G.

J. Bergmann, M. Heusinger, G. Andrä, and F. Falk, “Temperature dependent optical properties of amorphous silicon for diode laser crystallization,” Opt. Express 20(S6), A856–A863 (2012).
[Crossref]

T. Schmidt, I. Hoeger, A. Gawlik, G. Andrä, and F. Falk, “Solid phase epitaxy of silicon thin films by diode laser irradiation for photovoltaic applications,” Thin Solid Films 520(24), 7087–7092 (2012).
[Crossref]

G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C 5(10), 3221–3228 (2008).
[Crossref]

N. Sinh, G. Andrä, F. Falk, E. Ose, and J. Bergmann, “Optimization of layered laser crystallization for thin-film crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 295–303 (2002).
[Crossref]

Aoucher, M.

G. Farhi, M. Aoucher, and T. Mohammed-Brahim, “Study of the solid phase crystallization behavior of amorphous sputtered silicon by X-ray diffraction and electrical measurements,” Sol. Energy Mater. Sol. Cells 72(1-4), 551–558 (2002).
[Crossref]

Barnes, B. T.

Becker, C.

T. Sontheimer, S. Scherf, C. Klimm, C. Becker, and B. Rech, “Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells,” J. Appl. Phys.  110, 063530 (2011).

Bergmann, J.

J. Bergmann, M. Heusinger, G. Andrä, and F. Falk, “Temperature dependent optical properties of amorphous silicon for diode laser crystallization,” Opt. Express 20(S6), A856–A863 (2012).
[Crossref]

N. Sinh, G. Andrä, F. Falk, E. Ose, and J. Bergmann, “Optimization of layered laser crystallization for thin-film crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 295–303 (2002).
[Crossref]

Brixner, B.

Chaki, T.

T. Chaki, “Solid-phase-epitaxy – Effects of irradiation, dopant, and pressure,” Phys. Status Solidi A 142(1), 153–166 (1994).
[Crossref]

de Unamuno, S.

S. de Unamuno and E. Fogarassy, “A thermal description of the melting of c-silicon and a-silicon under pulsed excimer lasers,” Appl. Surf. Sci. 36(1-4), 1–11 (1989).
[Crossref]

Detavernier, C.

W. Knaepen, C. Detavernier, R. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon,” Thin Solid Films 516(15), 4946–4952 (2008).
[Crossref]

Egan, R.

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

Falk, F.

T. Schmidt, I. Hoeger, A. Gawlik, G. Andrä, and F. Falk, “Solid phase epitaxy of silicon thin films by diode laser irradiation for photovoltaic applications,” Thin Solid Films 520(24), 7087–7092 (2012).
[Crossref]

J. Bergmann, M. Heusinger, G. Andrä, and F. Falk, “Temperature dependent optical properties of amorphous silicon for diode laser crystallization,” Opt. Express 20(S6), A856–A863 (2012).
[Crossref]

G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C 5(10), 3221–3228 (2008).
[Crossref]

N. Sinh, G. Andrä, F. Falk, E. Ose, and J. Bergmann, “Optimization of layered laser crystallization for thin-film crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 295–303 (2002).
[Crossref]

Farhi, G.

G. Farhi, M. Aoucher, and T. Mohammed-Brahim, “Study of the solid phase crystallization behavior of amorphous sputtered silicon by X-ray diffraction and electrical measurements,” Sol. Energy Mater. Sol. Cells 72(1-4), 551–558 (2002).
[Crossref]

Fazio, E.

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

Fisicaro, G.

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

Fogarassy, E.

S. de Unamuno and E. Fogarassy, “A thermal description of the melting of c-silicon and a-silicon under pulsed excimer lasers,” Appl. Surf. Sci. 36(1-4), 1–11 (1989).
[Crossref]

Gawlik, A.

T. Schmidt, I. Hoeger, A. Gawlik, G. Andrä, and F. Falk, “Solid phase epitaxy of silicon thin films by diode laser irradiation for photovoltaic applications,” Thin Solid Films 520(24), 7087–7092 (2012).
[Crossref]

Grigoropoulos, C.

Y. Sun, X. Zhang, and C. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Tran. 40(7), 1591–1600 (1997).
[Crossref]

Heusinger, M.

Hoeger, I.

T. Schmidt, I. Hoeger, A. Gawlik, G. Andrä, and F. Falk, “Solid phase epitaxy of silicon thin films by diode laser irradiation for photovoltaic applications,” Thin Solid Films 520(24), 7087–7092 (2012).
[Crossref]

Klimm, C.

T. Sontheimer, S. Scherf, C. Klimm, C. Becker, and B. Rech, “Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells,” J. Appl. Phys.  110, 063530 (2011).

Knaepen, W.

W. Knaepen, C. Detavernier, R. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon,” Thin Solid Films 516(15), 4946–4952 (2008).
[Crossref]

Köster, U.

U. Köster, “Crystallization of amorphous silicon films,” Phys. Status Solidi A 48(2), 313–321 (1978).
[Crossref]

Kunz, O.

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

La Magna, A.

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

Lavoie, C.

W. Knaepen, C. Detavernier, R. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon,” Thin Solid Films 516(15), 4946–4952 (2008).
[Crossref]

Lombardo, S.

C. Spinella, S. Lombardo, and F. Priolo, “Crystal grain nucleation in amorphous silicon,” J. Appl. Phys. 84(10), 5383–5414 (1998).
[Crossref]

Mannino, G.

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

Matsuda, A.

A. Matsuda, “Microcrystalline silicon. Growth and device application,” J. Non-Cryst. Solids 338-340, 1–12 (2004).
[Crossref]

Mohammed-Brahim, T.

G. Farhi, M. Aoucher, and T. Mohammed-Brahim, “Study of the solid phase crystallization behavior of amorphous sputtered silicon by X-ray diffraction and electrical measurements,” Sol. Energy Mater. Sol. Cells 72(1-4), 551–558 (2002).
[Crossref]

Neri, F.

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

Olson, G.

G. Olson and J. Roth, “Kinetics of solid phase crystallization in amorphous silicon,” Mater. Sci. Rep. 3(1), 1–77 (1988).
[Crossref]

Ose, E.

N. Sinh, G. Andrä, F. Falk, E. Ose, and J. Bergmann, “Optimization of layered laser crystallization for thin-film crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 295–303 (2002).
[Crossref]

Ouyang, Z.

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

Priolo, F.

C. Spinella, S. Lombardo, and F. Priolo, “Crystal grain nucleation in amorphous silicon,” J. Appl. Phys. 84(10), 5383–5414 (1998).
[Crossref]

Privitera, V.

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

Rech, B.

T. Sontheimer, S. Scherf, C. Klimm, C. Becker, and B. Rech, “Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells,” J. Appl. Phys.  110, 063530 (2011).

Roth, J.

G. Olson and J. Roth, “Kinetics of solid phase crystallization in amorphous silicon,” Mater. Sci. Rep. 3(1), 1–77 (1988).
[Crossref]

Ruggeri, R.

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

Scherf, S.

T. Sontheimer, S. Scherf, C. Klimm, C. Becker, and B. Rech, “Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells,” J. Appl. Phys.  110, 063530 (2011).

Schmidt, T.

T. Schmidt, I. Hoeger, A. Gawlik, G. Andrä, and F. Falk, “Solid phase epitaxy of silicon thin films by diode laser irradiation for photovoltaic applications,” Thin Solid Films 520(24), 7087–7092 (2012).
[Crossref]

Sinh, N.

N. Sinh, G. Andrä, F. Falk, E. Ose, and J. Bergmann, “Optimization of layered laser crystallization for thin-film crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 295–303 (2002).
[Crossref]

Soderstrom, T.

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

Sontheimer, T.

T. Sontheimer, S. Scherf, C. Klimm, C. Becker, and B. Rech, “Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells,” J. Appl. Phys.  110, 063530 (2011).

Spinella, C.

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

C. Spinella, S. Lombardo, and F. Priolo, “Crystal grain nucleation in amorphous silicon,” J. Appl. Phys. 84(10), 5383–5414 (1998).
[Crossref]

Sun, Y.

Y. Sun, X. Zhang, and C. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Tran. 40(7), 1591–1600 (1997).
[Crossref]

Sweet, J. J.

W. Knaepen, C. Detavernier, R. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon,” Thin Solid Films 516(15), 4946–4952 (2008).
[Crossref]

Tao, Y.

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

Toyoda, T.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
[Crossref]

Van Meirhaeghe, R.

W. Knaepen, C. Detavernier, R. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon,” Thin Solid Films 516(15), 4946–4952 (2008).
[Crossref]

Varlamov, S.

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

Wolf, M.

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

Wong, J.

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

Wong, M.

D. Zhang and M. Wong, “Three-mask polycrystalline silicon TFT with metallic gate and junctions,” IEEE Electron Device Lett. 27(7), 564–566 (2006).
[Crossref]

Yabe, M.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
[Crossref]

Zhang, D.

D. Zhang and M. Wong, “Three-mask polycrystalline silicon TFT with metallic gate and junctions,” IEEE Electron Device Lett. 27(7), 564–566 (2006).
[Crossref]

Zhang, X.

Y. Sun, X. Zhang, and C. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Tran. 40(7), 1591–1600 (1997).
[Crossref]

Appl. Phys. Lett. (1)

G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, “Crystallization of implanted amorphous silicon during millisecond annealing by infrared laser irradiation,” Appl. Phys. Lett. 97(2), 022107 (2010).
[Crossref]

Appl. Surf. Sci. (1)

S. de Unamuno and E. Fogarassy, “A thermal description of the melting of c-silicon and a-silicon under pulsed excimer lasers,” Appl. Surf. Sci. 36(1-4), 1–11 (1989).
[Crossref]

IEEE Electron Device Lett. (1)

D. Zhang and M. Wong, “Three-mask polycrystalline silicon TFT with metallic gate and junctions,” IEEE Electron Device Lett. 27(7), 564–566 (2006).
[Crossref]

Int. J. Heat Mass Tran. (1)

Y. Sun, X. Zhang, and C. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Tran. 40(7), 1591–1600 (1997).
[Crossref]

J. Appl. Phys (1)

T. Sontheimer, S. Scherf, C. Klimm, C. Becker, and B. Rech, “Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells,” J. Appl. Phys.  110, 063530 (2011).

J. Appl. Phys. (1)

C. Spinella, S. Lombardo, and F. Priolo, “Crystal grain nucleation in amorphous silicon,” J. Appl. Phys. 84(10), 5383–5414 (1998).
[Crossref]

J. Cryst. Growth (1)

A. Aberle, “Progress with polycrystalline silicon thin-film solar cells on glass at UNSW,” J. Cryst. Growth 287(2), 386–390 (2006).
[Crossref]

J. Non-Cryst. Solids (1)

A. Matsuda, “Microcrystalline silicon. Growth and device application,” J. Non-Cryst. Solids 338-340, 1–12 (2004).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. D Appl. Phys. (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
[Crossref]

Mater. Sci. Rep. (1)

G. Olson and J. Roth, “Kinetics of solid phase crystallization in amorphous silicon,” Mater. Sci. Rep. 3(1), 1–77 (1988).
[Crossref]

Opt. Express (1)

Phys. Status Solidi A (2)

T. Chaki, “Solid-phase-epitaxy – Effects of irradiation, dopant, and pressure,” Phys. Status Solidi A 142(1), 153–166 (1994).
[Crossref]

U. Köster, “Crystallization of amorphous silicon films,” Phys. Status Solidi A 48(2), 313–321 (1978).
[Crossref]

Phys. Status Solidi C (1)

G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C 5(10), 3221–3228 (2008).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

N. Sinh, G. Andrä, F. Falk, E. Ose, and J. Bergmann, “Optimization of layered laser crystallization for thin-film crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 295–303 (2002).
[Crossref]

G. Farhi, M. Aoucher, and T. Mohammed-Brahim, “Study of the solid phase crystallization behavior of amorphous sputtered silicon by X-ray diffraction and electrical measurements,” Sol. Energy Mater. Sol. Cells 72(1-4), 551–558 (2002).
[Crossref]

Y. Tao, S. Varlamov, O. Kunz, Z. Ouyang, J. Wong, T. Soderstrom, M. Wolf, and R. Egan, “Effects of annealing temperature on crystallization kinetics, film properties and cell performance of silicon thin-film solar cells on glass,” Sol. Energy Mater. Sol. Cells 101, 186–192 (2012).
[Crossref]

Thin Solid Films (2)

T. Schmidt, I. Hoeger, A. Gawlik, G. Andrä, and F. Falk, “Solid phase epitaxy of silicon thin films by diode laser irradiation for photovoltaic applications,” Thin Solid Films 520(24), 7087–7092 (2012).
[Crossref]

W. Knaepen, C. Detavernier, R. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon,” Thin Solid Films 516(15), 4946–4952 (2008).
[Crossref]

Other (5)

Accuratus Corporation, “Fused Silica, SiO2 Glass Properties”. http://accuratus.com/fused.html .

T. A. Redfield and J. H. Hill, “Heat capacity of Molybdenum,” Oak Ridge National Laboratory (1951). http://www.ornl.gov/info/reports/1951/3445603608861.pdf .

International Molybdenum Association, “Molybdenum Properties”. http://www.imoa.info/molybdenum/molybdenum_properties.php .

E. P. Mikol, “The thermal conductivity of molybdenum over the temperature range 1000-2100°F,” Oak Ridge National Laboratory (1952). http://www.ornl.gov/info/reports/1952/3445603609021.pdf .

A. Bensberg, Research and Technology Development, Schott AG (personal communication, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of experimental setup for laser crystallization.

Fig. 2
Fig. 2

Layout of the used samples.

Fig. 3
Fig. 3

Measured intensity distribution of the diode laser in the focal plane.

Fig. 4
Fig. 4

Controlling voltage together with laser power output.

Fig. 5
Fig. 5

Typical TRR signal of a sample irradiated with a diode laser for 35 ms. The appropriate calculated temperature is shown in blue. Tmc marks the melting temperature of crystalline silicon whereas tmc stands for time at which the silicon melting was measured.

Fig. 6
Fig. 6

Power for a constant temperature in the center of the sample surface. The power and temperature scale are normalized.

Fig. 7
Fig. 7

TRR signal of a sample irradiated by different power levels following the function shown in Fig. 6. The irradiation starts at 0 s and ends at 1.5 s.

Tables (1)

Tables Icon

Table 1 Optical and thermal parameters used in the simulation. T R =289 K . Tis in K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ(T) c p (T) T t =(κ(T)T)
d ρ f (T) c p,f (T) T t t ( κ f (T) t T)= n (κ(T)T)+I

Metrics