Abstract

In spiral phase contrast (SPC) microscopy the edge-enhancement is typically independent of the helicity of the phase vortex filter. Here we show that for layered specimens containing screw-dislocations, as are e.g. present in mica or some crystallized organic substances, the intensity distribution in the filtered image acquires a dependence on the rotational direction of the filter. This allows one to map the distribution of phase singularities in the topography of the sample, by taking the intensity difference between two images recorded with opposite handedness. For the demonstration of this feature in a microscopy set-up, we encode the vortex filter as a binary off-axis hologram displayed on a spatial light modulator (SLM) placed in a Fourier plane. Using a binary grating, the diffraction efficiencies for the plus and minus first diffraction orders are equal, giving rise to two image waves which travel in different directions and are Fourier filtered with opposite helicity. The corresponding two images can be recorded simultaneously in two separate regions of the camera chip. This enables mapping of dislocations in the sample in a single camera exposure, as was demonstrated for various transparent samples.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13(3), 689–694 (2005).
    [CrossRef] [PubMed]
  2. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE7442, 74420E-1–74420E-12 (2009).
    [CrossRef]
  3. J. A. Davis, D. E. McNamara, D. M. Cottrell, and J. Campos, “Image processing with the radial Hilbert transform: theory and experiments,” Opt. Lett.25(2), 99–101 (2000).
    [CrossRef] [PubMed]
  4. K. Crabtree, J. A. Davis, and I. Moreno, “Optical processing with vortex-producing lenses,” Appl. Opt.43(6), 1360–1367 (2004).
    [CrossRef] [PubMed]
  5. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express14(9), 3792–3805 (2006).
    [CrossRef] [PubMed]
  6. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004).
    [CrossRef] [PubMed]
  7. G. A. Swartzlander., “Peering into darkness with a vortex spatial filter,” Opt. Lett.26(8), 497–499 (2001).
    [CrossRef] [PubMed]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
    [CrossRef] [PubMed]
  9. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett.22(1), 52–54 (1997).
    [CrossRef] [PubMed]
  10. I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, and D. M. Cottrell, “Vortex sensing diffraction gratings,” Opt. Lett.34(19), 2927–2929 (2009).
    [CrossRef] [PubMed]
  11. Q. Wang, X. W. Sun, and P. Shum, “Generating Doughnut-Shaped Beams with Large Charge Numbers by Use of Liquid-Crystal Spiral Phase Plates,” Appl. Opt.43(11), 2292–2297 (2004).
    [CrossRef] [PubMed]
  12. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics, 1991).
  13. J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett.90(13), 133901 (2003).
    [CrossRef] [PubMed]
  14. I. Sunagawa, Crystals: Growth, Morphology, and Perfection (Cambridge University, 2005).
  15. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
    [CrossRef]
  16. E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall.9(6), 558–562 (1961).
    [CrossRef]
  17. K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth137(3-4), 610–622 (1994).
    [CrossRef]
  18. J. J. De Yoreo, C. A. Orme, and T. A. Land, “Using atomic force microscopy to investigate solution crystal growth,” in Advances in Crystal Growth Research, Eds: K. Sato, K. Nakajima, and Y. Furukawa361–380, (Elsevier Science 2001), pp. 361–380.
  19. I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(5), 051710 (2006).
    [CrossRef] [PubMed]
  20. Y. Rumala and A. Leanhardt, “Multiple-beam interference in a spiral phase plate,” J. Opt. Soc. Am. B30(3), 615–621 (2013).
    [CrossRef]
  21. M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature464(7289), 737–739 (2010).
    [CrossRef] [PubMed]

2013 (1)

2010 (1)

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature464(7289), 737–739 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE7442, 74420E-1–74420E-12 (2009).
[CrossRef]

I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, and D. M. Cottrell, “Vortex sensing diffraction gratings,” Opt. Lett.34(19), 2927–2929 (2009).
[CrossRef] [PubMed]

2006 (2)

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express14(9), 3792–3805 (2006).
[CrossRef] [PubMed]

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(5), 051710 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

2003 (1)

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett.90(13), 133901 (2003).
[CrossRef] [PubMed]

2001 (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

G. A. Swartzlander., “Peering into darkness with a vortex spatial filter,” Opt. Lett.26(8), 497–499 (2001).
[CrossRef] [PubMed]

2000 (1)

1997 (1)

1994 (1)

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth137(3-4), 610–622 (1994).
[CrossRef]

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
[CrossRef]

1961 (1)

E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall.9(6), 558–562 (1961).
[CrossRef]

Allen, L.

Badizadegan, K.

Barnes, R. S.

E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall.9(6), 558–562 (1961).
[CrossRef]

Bernet, S.

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
[CrossRef]

Blanc, C.

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(5), 051710 (2006).
[CrossRef] [PubMed]

Campos, J.

Cottrell, D. M.

Crabtree, K.

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett.90(13), 133901 (2003).
[CrossRef] [PubMed]

Dasari, R. R.

Davis, J. A.

Deflores, L. P.

Dholakia, K.

Feld, M. S.

Fürhapter, S.

Grier, D. G.

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett.90(13), 133901 (2003).
[CrossRef] [PubMed]

Haist, T.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE7442, 74420E-1–74420E-12 (2009).
[CrossRef]

Hasler, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE7442, 74420E-1–74420E-12 (2009).
[CrossRef]

Iwai, H.

Jesacher, A.

Kameyama, T.

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth137(3-4), 610–622 (1994).
[CrossRef]

Kléman, M.

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(5), 051710 (2006).
[CrossRef] [PubMed]

Leanhardt, A.

Lelidis, I.

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(5), 051710 (2006).
[CrossRef] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Maurer, C.

McNamara, D. E.

Mitry, M. J.

Moreno, I.

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
[CrossRef]

Onuma, K.

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth137(3-4), 610–622 (1994).
[CrossRef]

Osten, W.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE7442, 74420E-1–74420E-12 (2009).
[CrossRef]

Padgett, M. J.

Pascoguin, B. M. L.

Popescu, G.

Ritsch-Marte, M.

Rumala, Y.

Shum, P.

Silke, E. C. H.

E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall.9(6), 558–562 (1961).
[CrossRef]

Simpson, N. B.

Sun, X. W.

Swartzlander, G. A.

Tonomura, A.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature464(7289), 737–739 (2010).
[CrossRef] [PubMed]

Tsukamoto, K.

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth137(3-4), 610–622 (1994).
[CrossRef]

Uchida, M.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature464(7289), 737–739 (2010).
[CrossRef] [PubMed]

Vaughan, J. C.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Wang, Q.

Warber, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE7442, 74420E-1–74420E-12 (2009).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Zwick, S.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE7442, 74420E-1–74420E-12 (2009).
[CrossRef]

Acta Metall. (1)

E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall.9(6), 558–562 (1961).
[CrossRef]

Appl. Opt. (2)

J. Cryst. Growth (1)

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth137(3-4), 610–622 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature464(7289), 737–739 (2010).
[CrossRef] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(5), 051710 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett.90(13), 133901 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
[CrossRef]

Proc. SPIE (1)

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE7442, 74420E-1–74420E-12 (2009).
[CrossRef]

Other (3)

J. J. De Yoreo, C. A. Orme, and T. A. Land, “Using atomic force microscopy to investigate solution crystal growth,” in Advances in Crystal Growth Research, Eds: K. Sato, K. Nakajima, and Y. Furukawa361–380, (Elsevier Science 2001), pp. 361–380.

I. Sunagawa, Crystals: Growth, Morphology, and Perfection (Cambridge University, 2005).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Imaging of a spiral phase plate (SPP) used as a test sample. The SPP converts an incoming Gaussian illumination beam into a LG0 + 1 mode. After diffraction by a binary spiral phase hologram the beam is back-transformed into a Gaussian beam in one of the diffraction orders (focused spot), and transformed into a LG0 + 2 beam (focused doughnut ring) in the other order.

Fig. 2
Fig. 2

Schematic sketch of the setup (not to scale).

Fig. 3
Fig. 3

Analyzing the handedness of a spiral phase plate used as a sample object. The first row shows the results of a numerical simulation; (a): simulated spiral phase sample: gray levels correspond to phase values; (b): left-handed spiral phase filtered image; (c): right-handed spiral phase filtered image; (d) calculated difference between (c) and (b). The images in the second row (e-h) show the corresponding results of the experimentally recorded bright field image of the spiral phase plate bounded by the field-of-view limiting aperture visible in (e). For reasons of greater clarity pictures 3(f-g) are false color images. Intensities are given in arbitrary units, and pictures (b, d) and (f, h) are normalized to the maximum intensity of pictures (c) and (d), respectively.

Fig. 4
Fig. 4

Mapping of the singularity distributions in various types of samples: (1-3) Muscovite, (4) crystallized acetylsalicylic acid. All images are recorded in a single exposure. The three sections in each frame correspond to a left-handed (a), a zero-order (b), and a right-handed spiral phase filtered image of the sample, respectively. The insets (d) shows the numerically calculated difference images of (a) and (c) for the regions marked in the images. Blue and red colored areas correspond to negative and positive values in the difference image, respectively, and thus indicate the orientation of the chiral phase singularities.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d min = 1,22λ NA

Metrics