Abstract

In recent years, plasmonic nano-antennas have been used in a wide range of applications in sensing, particle detection, imaging and Surface Enhanced Raman Scattering (SERS) detection. Also, arrays of nano-antennas have been recently developed to produce more directional radiation beams or to operate over a wide range of wavelengths. In this article, it is shown that small arrays of nano-antennas can be created by recycling the power that flows through their antenna gaps.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon.1(3), 438–483 (2009).
    [CrossRef]
  2. M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics2(4), 201–203 (2008).
    [CrossRef]
  3. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in Situ Surface-Enhanced Raman Scattering Detection,” Nano Lett.9(3), 1132–1138 (2009).
    [CrossRef] [PubMed]
  4. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Aperiodic metal nanooparticle arrays for surface enhanced Raman scattering (SERS),” Opt. Express17, 3741–3753 (2009).
  5. Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
    [CrossRef]
  6. M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett.35(5), 760–762 (2010).
    [CrossRef] [PubMed]
  7. C. Hagglund, M. Zach, and B. K. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
    [CrossRef]
  8. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
    [CrossRef] [PubMed]
  9. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express15(20), 13272–13281 (2007).
    [CrossRef] [PubMed]
  10. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4(5), 312–315 (2010).
    [CrossRef]
  11. I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express20(8), 8929–8938 (2012).
    [CrossRef] [PubMed]
  12. R. Adato, A. A. Yanik, C. H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express18(5), 4526–4537 (2010).
    [CrossRef] [PubMed]
  13. C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids, “Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas,” Opt. Express21(4), 5198–5208 (2013).
    [CrossRef] [PubMed]
  14. H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Opt. Express17(23), 20878–20884 (2009).
    [CrossRef] [PubMed]
  15. H. T. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Appl. Opt.50(16), 2391–2400 (2011).
    [CrossRef] [PubMed]
  16. S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet laser with optical waveguides grown by selective area metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys.35(Part 2, No. 4A), 411–413 (1996).
    [CrossRef]
  17. Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron.37, 100–107 (2001).
    [CrossRef]
  18. H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt.47(12), 2178–2185 (2008).
    [CrossRef] [PubMed]
  19. H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
    [CrossRef]
  20. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995), Chap. 10.
  21. Fullwave 6.1 RSOFT design group, 2008.
  22. E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” IEEE/OSA J. Lightwave Technol.31(15), 2459–2466 (2013).
    [CrossRef]
  23. W. L. Stutzman and G. A. Thiele, Antenna theory and design (Wiley, 1998).
  24. C. A. Balanis, Antenna theory: Analysis and design (Wiley, 1997).
  25. J. E. Bowers, L. A. Coldren, B. R. Hemenway, B. J. Miller, and R. J. Martin, “1.55 µm multisection ridge lasers,” Electron. Lett.19(14), 523–525 (1983).
    [CrossRef]
  26. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22(45), 5120–5124 (2010).
    [CrossRef] [PubMed]

2013

2012

I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express20(8), 8929–8938 (2012).
[CrossRef] [PubMed]

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
[CrossRef]

2011

2010

R. Adato, A. A. Yanik, C. H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express18(5), 4526–4537 (2010).
[CrossRef] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4(5), 312–315 (2010).
[CrossRef]

M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett.35(5), 760–762 (2010).
[CrossRef] [PubMed]

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

2009

2008

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics2(4), 201–203 (2008).
[CrossRef]

C. Hagglund, M. Zach, and B. K. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt.47(12), 2178–2185 (2008).
[CrossRef] [PubMed]

2007

2006

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

2005

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

2001

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron.37, 100–107 (2001).
[CrossRef]

1996

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet laser with optical waveguides grown by selective area metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys.35(Part 2, No. 4A), 411–413 (1996).
[CrossRef]

1983

J. E. Bowers, L. A. Coldren, B. R. Hemenway, B. J. Miller, and R. J. Martin, “1.55 µm multisection ridge lasers,” Electron. Lett.19(14), 523–525 (1983).
[CrossRef]

Adato, R.

Altug, H.

Ando, H.

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet laser with optical waveguides grown by selective area metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys.35(Part 2, No. 4A), 411–413 (1996).
[CrossRef]

Ando, S.

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet laser with optical waveguides grown by selective area metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys.35(Part 2, No. 4A), 411–413 (1996).
[CrossRef]

Banaee, M. G.

Bao, J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in Situ Surface-Enhanced Raman Scattering Detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Bharadwaj, P.

Boriskina, S. V.

Bour, D.

Bowers, J. E.

J. E. Bowers, L. A. Coldren, B. R. Hemenway, B. J. Miller, and R. J. Martin, “1.55 µm multisection ridge lasers,” Electron. Lett.19(14), 523–525 (1983).
[CrossRef]

Brongersma, M. L.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Cai, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Capasso, F.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in Situ Surface-Enhanced Raman Scattering Detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express15(20), 13272–13281 (2007).
[CrossRef] [PubMed]

Chettiar, U.

Coldren, L. A.

J. E. Bowers, L. A. Coldren, B. R. Hemenway, B. J. Miller, and R. J. Martin, “1.55 µm multisection ridge lasers,” Electron. Lett.19(14), 523–525 (1983).
[CrossRef]

Corzine, S.

Crozier, K. B.

Cubukcu, E.

Dal Negro, L.

Davids, P. S.

DeRose, C. T.

Deutsch, B.

Di Cioccio, L.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Dickey, M. D.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in Situ Surface-Enhanced Raman Scattering Detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Diehl, L.

El Melhaoui, L.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Engheta, N.

Fan, S.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Fedeli, J. M.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Fu, L.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
[CrossRef]

Garcia-Parajo, M. F.

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics2(4), 201–203 (2008).
[CrossRef]

Gopinath, A.

Guo, W. H.

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron.37, 100–107 (2001).
[CrossRef]

Hagglund, C.

C. Hagglund, M. Zach, and B. K. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

Hattori, H. T.

E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” IEEE/OSA J. Lightwave Technol.31(15), 2459–2466 (2013).
[CrossRef]

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
[CrossRef]

H. T. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Appl. Opt.50(16), 2391–2400 (2011).
[CrossRef] [PubMed]

H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Opt. Express17(23), 20878–20884 (2009).
[CrossRef] [PubMed]

H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt.47(12), 2178–2185 (2008).
[CrossRef] [PubMed]

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Hemenway, B. R.

J. E. Bowers, L. A. Coldren, B. R. Hemenway, B. J. Miller, and R. J. Martin, “1.55 µm multisection ridge lasers,” Electron. Lett.19(14), 523–525 (1983).
[CrossRef]

Höfler, G.

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4(5), 312–315 (2010).
[CrossRef]

Hollinger, G.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Huang, Y. Z.

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron.37, 100–107 (2001).
[CrossRef]

Jagadish, C.

E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” IEEE/OSA J. Lightwave Technol.31(15), 2459–2466 (2013).
[CrossRef]

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4(5), 312–315 (2010).
[CrossRef]

Kasemo, B. K.

C. Hagglund, M. Zach, and B. K. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

Kekatpure, R. D.

Kivshar, Y. S.

Kobayashi, N.

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet laser with optical waveguides grown by selective area metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys.35(Part 2, No. 4A), 411–413 (1996).
[CrossRef]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4(5), 312–315 (2010).
[CrossRef]

Letartre, X.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Li, Z.

E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” IEEE/OSA J. Lightwave Technol.31(15), 2459–2466 (2013).
[CrossRef]

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
[CrossRef]

H. T. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Appl. Opt.50(16), 2391–2400 (2011).
[CrossRef] [PubMed]

H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Opt. Express17(23), 20878–20884 (2009).
[CrossRef] [PubMed]

Liu, D.

Maksymov, I. S.

Martin, R. J.

J. E. Bowers, L. A. Coldren, B. R. Hemenway, B. J. Miller, and R. J. Martin, “1.55 µm multisection ridge lasers,” Electron. Lett.19(14), 523–525 (1983).
[CrossRef]

Miller, B. J.

J. E. Bowers, L. A. Coldren, B. R. Hemenway, B. J. Miller, and R. J. Martin, “1.55 µm multisection ridge lasers,” Electron. Lett.19(14), 523–525 (1983).
[CrossRef]

Mironov, E. G.

E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” IEEE/OSA J. Lightwave Technol.31(15), 2459–2466 (2013).
[CrossRef]

Miroshnichenko, A. E.

Novotny, L.

Parkinson, P.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
[CrossRef]

Premaratne, M.

Reinhard, B. M.

Rojo-Romeo, P.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Rukhlenko, I. D.

Seassal, C.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Shin, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Shvets, G.

Smythe, E. J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in Situ Surface-Enhanced Raman Scattering Detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Starbuck, A.

Tan, H. H.

E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” IEEE/OSA J. Lightwave Technol.31(15), 2459–2466 (2013).
[CrossRef]

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
[CrossRef]

Tatsuma, T.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

Tian, J.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
[CrossRef]

Tian, Y.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

Touraille, E.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Trotter, D. C.

Viktorovitch, P.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Vora, K.

E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” IEEE/OSA J. Lightwave Technol.31(15), 2459–2466 (2013).
[CrossRef]

Wang, Q. M.

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron.37, 100–107 (2001).
[CrossRef]

Watts, M. R.

Wendt, J. R.

Whitesides, G. M.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in Situ Surface-Enhanced Raman Scattering Detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Wu, C. H.

Yaacobi, A.

Yanik, A. A.

Yu, N.

Zach, M.

C. Hagglund, M. Zach, and B. K. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

Zhu, J.

Zussy, M.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

Adv. Mater.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. Lett.

C. Hagglund, M. Zach, and B. K. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

Electron. Lett.

J. E. Bowers, L. A. Coldren, B. R. Hemenway, B. J. Miller, and R. J. Martin, “1.55 µm multisection ridge lasers,” Electron. Lett.19(14), 523–525 (1983).
[CrossRef]

IEEE J. Quantum Electron.

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron.37, 100–107 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides,” IEEE Photon. Technol. Lett.18(1), 223–225 (2006).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” IEEE/OSA J. Lightwave Technol.31(15), 2459–2466 (2013).
[CrossRef]

J. Am. Chem. Soc.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc.127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys.45(30), 305102 (2012).
[CrossRef]

Jpn. J. Appl. Phys.

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet laser with optical waveguides grown by selective area metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys.35(Part 2, No. 4A), 411–413 (1996).
[CrossRef]

Nano Lett.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in Situ Surface-Enhanced Raman Scattering Detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Nat. Photonics

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics2(4), 201–203 (2008).
[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4(5), 312–315 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995), Chap. 10.

Fullwave 6.1 RSOFT design group, 2008.

W. L. Stutzman and G. A. Thiele, Antenna theory and design (Wiley, 1998).

C. A. Balanis, Antenna theory: Analysis and design (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a). Lateral view of the device and (b) Top view of the device.

Fig. 2
Fig. 2

Electric field enhancement factor (EFF) for a single nano-antenna as a function of the silica gap thickness.

Fig. 3
Fig. 3

(a) Electric field enhancement factor (EFF2 ) for a second nano-antenna as a function of the silica gap thickness when the gap thickness of the 1st nano-antenna is 20 nm (b) Top view of the magnetic field profile (Hx, left figure) and lateral view of the electric field profile (Ey, right figure).

Fig. 4
Fig. 4

Electric field radiation pattern for (a) equal gap thickness antennas and (b) equal electric field amplitudes antennas.

Fig. 5
Fig. 5

Far-field diagram of a linear antenna array of N elements.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

EF F p = | E nano,p | | E inc |
ε gold ( ω FW )=1+ p=1 6 Δ ε p a p ω FW 2 i b p ω FW + c p
E total = E singleelement ×ArrayFactor
ArrayFactor= p=1 N A p exp( i θ p )
θ p = 2π λ n back r q=1 p1 2π λ n back L q cos( Φ ) β p
β p = q=1 p1 2π λ n eff L q
Z= E y d y H x dx

Metrics