Abstract

Pulses of coherent terahertz radiation can be efficiently generated by a lateral diffusion current after ultrafast generation of photo-carriers near a metal interface on the surface of a semiconductor, this is known as the lateral photo-Dember effect. We investigate how the emission depends on the pump spot position, size, power and how it is affected by the application of an applied external bias. We study the role of the metallic mask and how it suppresses emission from the carriers diffusing under it due to a reduction of available radiation states both theoretically and experimentally.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces”, C. R. Phys.9, 130–141 (2008).
    [CrossRef]
  2. M. B. Johnston, D. Whittaker, A. Corchia, A. G. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301–165308 (2002).
    [CrossRef]
  3. K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330–155336 (2006).
    [CrossRef]
  4. P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb” J. Appl. Phys.91, 5533–5537 (2002).
    [CrossRef]
  5. A. Reklaitis, “Crossover between surface field and photo-Dember effect induced terahertz emission,” J. Appl. Phys109, 083108 (2011).
    [CrossRef]
  6. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18, 4939–4947 (2010).
    [CrossRef] [PubMed]
  7. G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
    [CrossRef]
  8. G. Klatt, D. Stephan, M. Beck, J. Demsar, and T. Dekorsy, “Large-area laser-driven terahertz emitters,” Electron. Lett.46, S24–S26 (2010).
    [CrossRef]
  9. W. Qiao, D. Stephan, M. Hasselbeck, Q. Liang, and T. Dekorsy, “Low-temperature THz time domain waveguide spectrometer with butt-coup emitter and detector crystal,” Opt. Express20, 19769–19777 (2012).
    [CrossRef] [PubMed]
  10. M. Barnes, D. McBryde, G. Daniell, G. Whitworth, A. L. Chung, A. H. Quarterman, K. G. Wilcox, H. E. Beere, D. A. Ritchie, and V. Apostolopoulos, “Terahertz emission by diffusion of carriers and metal-mask dipole inhibition of radiation,” Opt. Express20, 8898–8906 (2012).
    [CrossRef] [PubMed]
  11. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1,2, 693–701 (1970).
    [CrossRef]
  12. D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).
  13. I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
    [CrossRef]
  14. I. S. Gregory, “The development of a continuous-wave terahertz imaging system,” Ph.D. thesis, University of Cambridge (2004).
  15. C. Baker, “Development of semiconductor materials for terahertz photoconductive antennas,” Ph.D. thesis, University of Cambridge (2004).
  16. S. Ralph and D. Grischkowsky, “Trap-enhanced electric-fields in semi-Insulators - The Role of Electrical and Optical Carrier Injection,” Appl. Phys. Lett.59, 1972–1974 (1991).
    [CrossRef]
  17. N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface” Appl. Phys. Lett.58, 222 (1991).
    [CrossRef]
  18. M. Tani and K. Sakai, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt.36, 7853–7859 (1997).
    [CrossRef]

2012 (2)

2011 (2)

A. Reklaitis, “Crossover between surface field and photo-Dember effect induced terahertz emission,” J. Appl. Phys109, 083108 (2011).
[CrossRef]

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

2010 (2)

2008 (1)

V. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces”, C. R. Phys.9, 130–141 (2008).
[CrossRef]

2006 (1)

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330–155336 (2006).
[CrossRef]

2005 (1)

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

2002 (2)

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb” J. Appl. Phys.91, 5533–5537 (2002).
[CrossRef]

M. B. Johnston, D. Whittaker, A. Corchia, A. G. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301–165308 (2002).
[CrossRef]

1997 (1)

1991 (2)

S. Ralph and D. Grischkowsky, “Trap-enhanced electric-fields in semi-Insulators - The Role of Electrical and Optical Carrier Injection,” Appl. Phys. Lett.59, 1972–1974 (1991).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface” Appl. Phys. Lett.58, 222 (1991).
[CrossRef]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1,2, 693–701 (1970).
[CrossRef]

Adomavicius, R.

V. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces”, C. R. Phys.9, 130–141 (2008).
[CrossRef]

Apostolopoulos, V.

M. Barnes, D. McBryde, G. Daniell, G. Whitworth, A. L. Chung, A. H. Quarterman, K. G. Wilcox, H. E. Beere, D. A. Ritchie, and V. Apostolopoulos, “Terahertz emission by diffusion of carriers and metal-mask dipole inhibition of radiation,” Opt. Express20, 8898–8906 (2012).
[CrossRef] [PubMed]

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

Baker, C.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

C. Baker, “Development of semiconductor materials for terahertz photoconductive antennas,” Ph.D. thesis, University of Cambridge (2004).

Barnes, M.

Barnes, M. E.

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

Bartels, A.

Bastian, G.

Beck, M.

Beere, H. E.

Chung, A. L.

M. Barnes, D. McBryde, G. Daniell, G. Whitworth, A. L. Chung, A. H. Quarterman, K. G. Wilcox, H. E. Beere, D. A. Ritchie, and V. Apostolopoulos, “Terahertz emission by diffusion of carriers and metal-mask dipole inhibition of radiation,” Opt. Express20, 8898–8906 (2012).
[CrossRef] [PubMed]

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

Cole, B. E.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

Corchia, A.

M. B. Johnston, D. Whittaker, A. Corchia, A. G. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301–165308 (2002).
[CrossRef]

Daniell, G.

Daniell, G. J.

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

Davies, A. G.

M. B. Johnston, D. Whittaker, A. Corchia, A. G. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301–165308 (2002).
[CrossRef]

Dekorsy, T.

W. Qiao, D. Stephan, M. Hasselbeck, Q. Liang, and T. Dekorsy, “Low-temperature THz time domain waveguide spectrometer with butt-coup emitter and detector crystal,” Opt. Express20, 19769–19777 (2012).
[CrossRef] [PubMed]

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

G. Klatt, D. Stephan, M. Beck, J. Demsar, and T. Dekorsy, “Large-area laser-driven terahertz emitters,” Electron. Lett.46, S24–S26 (2010).
[CrossRef]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18, 4939–4947 (2010).
[CrossRef] [PubMed]

Demsar, J.

G. Klatt, D. Stephan, M. Beck, J. Demsar, and T. Dekorsy, “Large-area laser-driven terahertz emitters,” Electron. Lett.46, S24–S26 (2010).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1,2, 693–701 (1970).
[CrossRef]

Evans, M. J.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

Faist, J.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18, 4939–4947 (2010).
[CrossRef] [PubMed]

Fischer, M.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18, 4939–4947 (2010).
[CrossRef] [PubMed]

Gebs, R.

Gregory, I. S.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

I. S. Gregory, “The development of a continuous-wave terahertz imaging system,” Ph.D. thesis, University of Cambridge (2004).

Grischkowsky, D.

S. Ralph and D. Grischkowsky, “Trap-enhanced electric-fields in semi-Insulators - The Role of Electrical and Optical Carrier Injection,” Appl. Phys. Lett.59, 1972–1974 (1991).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface” Appl. Phys. Lett.58, 222 (1991).
[CrossRef]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb” J. Appl. Phys.91, 5533–5537 (2002).
[CrossRef]

Hasselbeck, M.

Hilser, F.

Huber, R.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Huska, K.

Johnston, M. B.

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18, 4939–4947 (2010).
[CrossRef] [PubMed]

M. B. Johnston, D. Whittaker, A. Corchia, A. G. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301–165308 (2002).
[CrossRef]

Katzenellenbogen, N.

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface” Appl. Phys. Lett.58, 222 (1991).
[CrossRef]

Klatt, G.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18, 4939–4947 (2010).
[CrossRef] [PubMed]

G. Klatt, D. Stephan, M. Beck, J. Demsar, and T. Dekorsy, “Large-area laser-driven terahertz emitters,” Electron. Lett.46, S24–S26 (2010).
[CrossRef]

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb” J. Appl. Phys.91, 5533–5537 (2002).
[CrossRef]

Krotkus, A.

V. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces”, C. R. Phys.9, 130–141 (2008).
[CrossRef]

Leitenstorfer, A.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Lemmer, U.

Liang, Q.

Linfield, E.

M. B. Johnston, D. Whittaker, A. Corchia, A. G. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301–165308 (2002).
[CrossRef]

Liu, K.

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330–155336 (2006).
[CrossRef]

Malevich, V.

V. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces”, C. R. Phys.9, 130–141 (2008).
[CrossRef]

McBryde, D.

M. Barnes, D. McBryde, G. Daniell, G. Whitworth, A. L. Chung, A. H. Quarterman, K. G. Wilcox, H. E. Beere, D. A. Ritchie, and V. Apostolopoulos, “Terahertz emission by diffusion of carriers and metal-mask dipole inhibition of radiation,” Opt. Express20, 8898–8906 (2012).
[CrossRef] [PubMed]

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

Mihoubi, Z.

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

Missous, M.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

Pepper, M.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

Qiao, W.

Quarterman, A. H.

M. Barnes, D. McBryde, G. Daniell, G. Whitworth, A. L. Chung, A. H. Quarterman, K. G. Wilcox, H. E. Beere, D. A. Ritchie, and V. Apostolopoulos, “Terahertz emission by diffusion of carriers and metal-mask dipole inhibition of radiation,” Opt. Express20, 8898–8906 (2012).
[CrossRef] [PubMed]

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

Ralph, S.

S. Ralph and D. Grischkowsky, “Trap-enhanced electric-fields in semi-Insulators - The Role of Electrical and Optical Carrier Injection,” Appl. Phys. Lett.59, 1972–1974 (1991).
[CrossRef]

Reklaitis, A.

A. Reklaitis, “Crossover between surface field and photo-Dember effect induced terahertz emission,” J. Appl. Phys109, 083108 (2011).
[CrossRef]

Ritchie, D. A.

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb” J. Appl. Phys.91, 5533–5537 (2002).
[CrossRef]

M. Tani and K. Sakai, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt.36, 7853–7859 (1997).
[CrossRef]

Schubert, O.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Spencer, L.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

Stephan, D.

W. Qiao, D. Stephan, M. Hasselbeck, Q. Liang, and T. Dekorsy, “Low-temperature THz time domain waveguide spectrometer with butt-coup emitter and detector crystal,” Opt. Express20, 19769–19777 (2012).
[CrossRef] [PubMed]

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

G. Klatt, D. Stephan, M. Beck, J. Demsar, and T. Dekorsy, “Large-area laser-driven terahertz emitters,” Electron. Lett.46, S24–S26 (2010).
[CrossRef]

Surrer, B.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Tani, M.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb” J. Appl. Phys.91, 5533–5537 (2002).
[CrossRef]

M. Tani and K. Sakai, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt.36, 7853–7859 (1997).
[CrossRef]

Tribe, W. R.

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

Tropper, A. C.

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

Whittaker, D.

M. B. Johnston, D. Whittaker, A. Corchia, A. G. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301–165308 (2002).
[CrossRef]

Whitworth, G.

Wilcox, K. G.

M. Barnes, D. McBryde, G. Daniell, G. Whitworth, A. L. Chung, A. H. Quarterman, K. G. Wilcox, H. E. Beere, D. A. Ritchie, and V. Apostolopoulos, “Terahertz emission by diffusion of carriers and metal-mask dipole inhibition of radiation,” Opt. Express20, 8898–8906 (2012).
[CrossRef] [PubMed]

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

Xu, J. Z.

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330–155336 (2006).
[CrossRef]

Yuan, T.

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330–155336 (2006).
[CrossRef]

Zhang, X. C.

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330–155336 (2006).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb” J. Appl. Phys.91, 5533–5537 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Ralph and D. Grischkowsky, “Trap-enhanced electric-fields in semi-Insulators - The Role of Electrical and Optical Carrier Injection,” Appl. Phys. Lett.59, 1972–1974 (1991).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface” Appl. Phys. Lett.58, 222 (1991).
[CrossRef]

I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett.86, 204104 (2005).
[CrossRef]

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

C. R. Phys. (1)

V. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces”, C. R. Phys.9, 130–141 (2008).
[CrossRef]

Electron. Lett. (1)

G. Klatt, D. Stephan, M. Beck, J. Demsar, and T. Dekorsy, “Large-area laser-driven terahertz emitters,” Electron. Lett.46, S24–S26 (2010).
[CrossRef]

J. Appl. Phys (1)

A. Reklaitis, “Crossover between surface field and photo-Dember effect induced terahertz emission,” J. Appl. Phys109, 083108 (2011).
[CrossRef]

J. Appl. Phys. (1)

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb” J. Appl. Phys.91, 5533–5537 (2002).
[CrossRef]

J. Lumin. (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1,2, 693–701 (1970).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (2)

M. B. Johnston, D. Whittaker, A. Corchia, A. G. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301–165308 (2002).
[CrossRef]

K. Liu, J. Z. Xu, T. Yuan, and X. C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330–155336 (2006).
[CrossRef]

Other (3)

D. McBryde, M. E. Barnes, G. J. Daniell, A. L. Chung, Z. Mihoubi, A. H. Quarterman, K. G. Wilcox, A. C. Tropper, and V. Apostolopoulos, “Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect,” in Proceedings of The 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2011).

I. S. Gregory, “The development of a continuous-wave terahertz imaging system,” Ph.D. thesis, University of Cambridge (2004).

C. Baker, “Development of semiconductor materials for terahertz photoconductive antennas,” Ph.D. thesis, University of Cambridge (2004).

Supplementary Material (1)

» Media 1: MOV (1859 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic showing the geometry of an LPD emitter; a semiconductor surface partially masked by a deposited metal layer, where an ultralfast band gap matched laser is focused half on the metallic mask and half on the semiconductor surface creates a distribution of photo-generated carriers near the metal-semiconductor interface which radiate in the same direction as the optical excitation.

Fig. 2
Fig. 2

(a) A sketch showing how our emitter is held on a printed circuit board (PCB) then touching on a silicon lens, all elements can be aligned using translation stages. A model of the dynamic electric field (z-axis) produced by drift-diffusion after an asymmetric distribution of carriers is generated in GaAs; red is a positive field, blue is a negative field. In (b), a layer of gold is on top the GaAs indicated by the yellow rectangle. In (c), there is no gold layer and the horizontal white line denotes the surface of the semiconductor.

Fig. 3
Fig. 3

Time domain of detected THz emission from LPD emitter biased at −0.75 kV/cm, 0 kV/cm and +0.75 kV/cm; the sign of the electric field corresponds to the sign of the charge of the irradiated electrode. Insert shows experimental and theoretical results of the amplitude of THz pulse peak from LPD emitter as a function of applied electric field.

Fig. 4
Fig. 4

(a) The peak THz signal detected as a function of position across the semiconductor surface which is enclosed between two parallel gold regions separated by 200 μm. (b) The THz radiation from a Gaussian pump spot on bare LT-GaAs in comparison to the radiation observed from radiation of the metal edge (LPD effect). THz radiation from bare LT-GaAs originates from diffusion current and surface fields, due to the strong focusing provided from the combination of the Si-lens and parabolic mirrors.

Fig. 5
Fig. 5

The THz radiation from bare LT-GaAs from a whole spot and two half-masked Gaussians, by shadow-masking opposite sides of the Gaussian laser spot. The insert shows a photo of an image of the shadow masked spot on the bare semiconductor surface, we found the spot to have a HWHM on one side to be ∼ 3 μm and the other to be ∼ 12 μm.

Fig. 6
Fig. 6

(a) Schematic of experiment where the metal-semiconductor interface of the LPD emitter (extending to the left) is translated underneath the shadow masked semicircular pump spot. The rest of the figure is the central frame from ( Media 1). (b) Shows an image and scale of the semicircular pump spot on the surface of the LPD emitter (c) time scan of detected THz signal (d) peak amplitude of detected THz emission for different metal mask positions, highlighted spot is the current position. In this case the metal-semiconductor interface is at the sharp edge of the semicircular pump spot, which we define as mask position 0. Position −20 μm is when the metal edge is to the far left of the image; position 20 μm is when the metal edge is to the far right and all the illuminated spot is covered by the metallic region.

Fig. 7
Fig. 7

(a) Peak to Peak amplitude of detected THz emission for different spot size radii (1/e2) and average powers plotted as a function of fluence. The solid lines are saturation curve fits. (b) Calculated efficiency curve using the saturation formula and fitting parameters from the fits shown in Fig. 7(a) for a constant fluence of 0.01 mJ/cm2 with increasing spot size.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e t = μ x ( n e E ) + D 2 n e x 2 n e n h τ 1 n e τ 2 + G ( x , t )

Metrics