Abstract

Fiber oscillators operating in the normal dispersion regime allow generating high energy output pulses. The best stability of such oscillators is observed when the intracavity dispersion is close to zero. Intracavity dispersion compensation in such oscillators can be achieved using a higher-order mode fiber, which substantially reduces the higher order dispersion compared to all-normal dispersion oscillators or oscillators using intracavity gratings for dispersion compensation. Using this approach, we are able to obtain relatively high energy pulses, with high fidelity. Our modeling based on an analytic approach for oscillators operating in the normal dispersion regime predicts that at intermediate pulse energies an almost flat chirp can be obtained at the oscillator output enabling good pulse compression with a grating compressor close to Fourier limited duration. Here, we present a mode-locked ytterbium-doped fiber oscillator with a higher-order mode fiber operating in the net normal-dispersion regime, delivering 7.2 nJ pulses that can be dechirped down to 62 fs using a simple grating compressor.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugžlys, A. Galvanauskas, F. Ilday, and A. Baltuška, “Pulse fidelity control in a 20-μJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Physics21, 1329 (2011).
    [CrossRef]
  2. A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. Lai, P. Phua, A. Marcinkevičius, M. Fermann, L. Giniunas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett.34, 2075 (2009).
    [CrossRef]
  3. T. Balčiunas, O. Mücke, P. Mišeikis, G. Andriukaitis, A. Pugžlys, L. Giniunas, R. Danielius, R. Holzwarth, and A. Baltuška, “Carrier envelope phase stabilization of a Yb:KGW laser amplifier,” Opt. Lett.36, 3242 (2011).
    [CrossRef]
  4. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express16, 7055 (2008).
    [CrossRef] [PubMed]
  5. F. Ilday, J. Buckley, H. Lim, F. Wise, and W. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett.28, 1365 (2003).
    [CrossRef] [PubMed]
  6. S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser: Part I – theory,” IEEE J. Quantum Electron.33, 649 (1997).
    [CrossRef]
  7. R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express18, 5041 (2010).
    [CrossRef] [PubMed]
  8. L. Nugent-Glandorf, T. Johnson, Y. Kobayashi, and S. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett.36, 1578 (2011).
    [CrossRef] [PubMed]
  9. M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quant.15, 191 (2009).
    [CrossRef]
  10. T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
    [CrossRef]
  11. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express10, 1497 (2002).
    [CrossRef] [PubMed]
  12. S. Ramachandran, S. Ghalmi, J. Nicholson, M. Yan, P. Wisk, E. Monberg, and F. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett.31, 2532 (2006).
    [CrossRef] [PubMed]
  13. M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32, 2373 (2007).
    [CrossRef]
  14. E. Podivilov and V. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett.82, 467 (2005).
    [CrossRef]
  15. V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
    [CrossRef]
  16. W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A77, 023814 (2008).
    [CrossRef]
  17. V. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A79, 043829 (2009).
    [CrossRef]
  18. W. Renninger, A. Chong, and F. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82, 021805(R)(2010).
    [CrossRef]
  19. V. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express18, 25757 (2010).
    [CrossRef] [PubMed]
  20. V. Kalashnikov, “Chirped-pulse oscillators: Route to the energy-scalable femtosecond pulses,” in “Solid State Lasers,” A. Al-Khursan, ed. (InTech, 2012), p. 145.
  21. V. Kalashnikov, A. Fernández, and A. Apolonski, “High-order dispersion in chirped-pulse oscillators,” Opt. Express16, 4206 (2008).
    [CrossRef] [PubMed]
  22. B. Nie, D. Pestov, F. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express19, 12074 (2011).
    [CrossRef] [PubMed]
  23. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B24, 1803 (2007).
    [CrossRef]
  24. K. Tamura and M. Nakazawa, “Optimizing power extraction in stretched-pulse fiber ring lasers,” Appl. Phys. Lett.67, 3691 (1995).
    [CrossRef]

2011

2010

2009

A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. Lai, P. Phua, A. Marcinkevičius, M. Fermann, L. Giniunas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett.34, 2075 (2009).
[CrossRef]

V. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A79, 043829 (2009).
[CrossRef]

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quant.15, 191 (2009).
[CrossRef]

2008

T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
[CrossRef]

X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express16, 7055 (2008).
[CrossRef] [PubMed]

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A77, 023814 (2008).
[CrossRef]

V. Kalashnikov, A. Fernández, and A. Apolonski, “High-order dispersion in chirped-pulse oscillators,” Opt. Express16, 4206 (2008).
[CrossRef] [PubMed]

2007

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B24, 1803 (2007).
[CrossRef]

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32, 2373 (2007).
[CrossRef]

2006

2005

E. Podivilov and V. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett.82, 467 (2005).
[CrossRef]

V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
[CrossRef]

2003

2002

1997

S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser: Part I – theory,” IEEE J. Quantum Electron.33, 649 (1997).
[CrossRef]

1995

K. Tamura and M. Nakazawa, “Optimizing power extraction in stretched-pulse fiber ring lasers,” Appl. Phys. Lett.67, 3691 (1995).
[CrossRef]

Ališauskas, S.

Andriukaitis, G.

Apolonski, A.

V. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express18, 25757 (2010).
[CrossRef] [PubMed]

V. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A79, 043829 (2009).
[CrossRef]

V. Kalashnikov, A. Fernández, and A. Apolonski, “High-order dispersion in chirped-pulse oscillators,” Opt. Express16, 4206 (2008).
[CrossRef] [PubMed]

V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
[CrossRef]

Balciunas, T.

Baltuška, A.

Buckley, J.

Chernykh, A.

V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
[CrossRef]

Chong, A.

W. Renninger, A. Chong, and F. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82, 021805(R)(2010).
[CrossRef]

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A77, 023814 (2008).
[CrossRef]

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B24, 1803 (2007).
[CrossRef]

Clark, W.

Danielius, R.

Dantus, M.

Diddams, S.

Dimarcello, F.

Fermann, M.

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quant.15, 191 (2009).
[CrossRef]

A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. Lai, P. Phua, A. Marcinkevičius, M. Fermann, L. Giniunas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett.34, 2075 (2009).
[CrossRef]

T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
[CrossRef]

Fernández, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugžlys, A. Galvanauskas, F. Ilday, and A. Baltuška, “Pulse fidelity control in a 20-μJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Physics21, 1329 (2011).
[CrossRef]

V. Kalashnikov, A. Fernández, and A. Apolonski, “High-order dispersion in chirped-pulse oscillators,” Opt. Express16, 4206 (2008).
[CrossRef] [PubMed]

V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
[CrossRef]

Galvanauskas, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugžlys, A. Galvanauskas, F. Ilday, and A. Baltuška, “Pulse fidelity control in a 20-μJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Physics21, 1329 (2011).
[CrossRef]

Ghalmi, S.

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32, 2373 (2007).
[CrossRef]

S. Ramachandran, S. Ghalmi, J. Nicholson, M. Yan, P. Wisk, E. Monberg, and F. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett.31, 2532 (2006).
[CrossRef] [PubMed]

Giniunas, L.

Graf, R.

V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
[CrossRef]

Hartl, I.

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quant.15, 191 (2009).
[CrossRef]

T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
[CrossRef]

Haus, H.

S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser: Part I – theory,” IEEE J. Quantum Electron.33, 649 (1997).
[CrossRef]

Holzwarth, R.

Ilday, F.

Johnson, T.

Kalashnikov, V.

V. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express18, 25757 (2010).
[CrossRef] [PubMed]

V. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A79, 043829 (2009).
[CrossRef]

V. Kalashnikov, A. Fernández, and A. Apolonski, “High-order dispersion in chirped-pulse oscillators,” Opt. Express16, 4206 (2008).
[CrossRef] [PubMed]

E. Podivilov and V. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett.82, 467 (2005).
[CrossRef]

V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
[CrossRef]

V. Kalashnikov, “Chirped-pulse oscillators: Route to the energy-scalable femtosecond pulses,” in “Solid State Lasers,” A. Al-Khursan, ed. (InTech, 2012), p. 145.

Kobayashi, Y.

Kracht, D.

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32, 2373 (2007).
[CrossRef]

Lai, W.

Li, H.

Li, R.

Lim, H.

Marcinkevicius, A.

A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. Lai, P. Phua, A. Marcinkevičius, M. Fermann, L. Giniunas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett.34, 2075 (2009).
[CrossRef]

T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
[CrossRef]

Martin, M.

T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
[CrossRef]

Mišeikis, P.

Monberg, E.

Mücke, O.

Nakazawa, M.

K. Tamura and M. Nakazawa, “Optimizing power extraction in stretched-pulse fiber ring lasers,” Appl. Phys. Lett.67, 3691 (1995).
[CrossRef]

Namiki, S.

S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser: Part I – theory,” IEEE J. Quantum Electron.33, 649 (1997).
[CrossRef]

Naumov, S.

V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
[CrossRef]

Nicholson, J.

Nie, B.

Nugent-Glandorf, L.

Paschotta, R.

Pestov, D.

Phua, P.

Podivilov, E.

V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
[CrossRef]

E. Podivilov and V. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett.82, 467 (2005).
[CrossRef]

Prochnow, O.

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32, 2373 (2007).
[CrossRef]

Pugžlys, A.

Ramachandran, S.

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32, 2373 (2007).
[CrossRef]

S. Ramachandran, S. Ghalmi, J. Nicholson, M. Yan, P. Wisk, E. Monberg, and F. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett.31, 2532 (2006).
[CrossRef] [PubMed]

Renninger, W.

W. Renninger, A. Chong, and F. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82, 021805(R)(2010).
[CrossRef]

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A77, 023814 (2008).
[CrossRef]

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B24, 1803 (2007).
[CrossRef]

Ruehl, A.

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32, 2373 (2007).
[CrossRef]

Schibli, T.

T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
[CrossRef]

Schultz, M.

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32, 2373 (2007).
[CrossRef]

Sidorov-Biryukov, D.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugžlys, A. Galvanauskas, F. Ilday, and A. Baltuška, “Pulse fidelity control in a 20-μJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Physics21, 1329 (2011).
[CrossRef]

Su, L.

Tamura, K.

K. Tamura and M. Nakazawa, “Optimizing power extraction in stretched-pulse fiber ring lasers,” Appl. Phys. Lett.67, 3691 (1995).
[CrossRef]

Torizuka, K.

Verhoef, A.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugžlys, A. Galvanauskas, F. Ilday, and A. Baltuška, “Pulse fidelity control in a 20-μJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Physics21, 1329 (2011).
[CrossRef]

Wandt, D.

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32, 2373 (2007).
[CrossRef]

Wise, F.

Wisk, P.

Xu, J.

Yan, M.

Ye, J.

T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
[CrossRef]

Yoshitomi, D.

Yost, D.

T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
[CrossRef]

Zhou, S.

Zhou, X.

Zhu, L.

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugžlys, A. Galvanauskas, F. Ilday, and A. Baltuška, “Pulse fidelity control in a 20-μJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Physics21, 1329 (2011).
[CrossRef]

Appl. Phys. Lett.

K. Tamura and M. Nakazawa, “Optimizing power extraction in stretched-pulse fiber ring lasers,” Appl. Phys. Lett.67, 3691 (1995).
[CrossRef]

IEEE J. Quantum Electron.

S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser: Part I – theory,” IEEE J. Quantum Electron.33, 649 (1997).
[CrossRef]

IEEE J. Sel. Top. Quant.

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quant.15, 191 (2009).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

E. Podivilov and V. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett.82, 467 (2005).
[CrossRef]

Laser Physics

A. Fernández, L. Zhu, A. Verhoef, D. Sidorov-Biryukov, A. Pugžlys, A. Galvanauskas, F. Ilday, and A. Baltuška, “Pulse fidelity control in a 20-μJ sub-200-fs monolithic Yb-fiber amplifier,” Laser Physics21, 1329 (2011).
[CrossRef]

Nat. Photonics

T. Schibli, I. Hartl, D. Yost, M. Martin, A. Marcinkevičius, M. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2, 355 (2008).
[CrossRef]

New. J. Phys.

V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernández, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. theory and comparison with experiment,” New. J. Phys.7, 217 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A77, 023814 (2008).
[CrossRef]

V. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A79, 043829 (2009).
[CrossRef]

W. Renninger, A. Chong, and F. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82, 021805(R)(2010).
[CrossRef]

Other

V. Kalashnikov, “Chirped-pulse oscillators: Route to the energy-scalable femtosecond pulses,” in “Solid State Lasers,” A. Al-Khursan, ed. (InTech, 2012), p. 145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Sketch of the Yb-fiber oscillator. PC – polarization controller; PBS – polarizer beamsplitter; IF – 10 nm FWHM interference filter; FI – Faraday isolator. (b) Intracavity dispersion of the Yb-fiber oscillator. The blue curve shows the measured dispersion introduced by the 6.2 m of SMF, the red curve shows the measured dispersion introduced by the 3.6 m of HOM fiber, and the black curve shows the resultant net intracavity dispersion.

Fig. 2
Fig. 2

Results of analytic modeling of fiber oscillators working with net normal intra-cavity dispersion. (a) 2D-Master diagram showing under which conditions stable pulsed operation is possible (the black curve marks the stability border). On the vertical axis, the dimensionless parameter Σ ≡ αγ/βκ is set ( α Ω f g 2 with Ωfg–combined filter and gain bandwidth, γ–self phase modulation coefficient, β–dispersion, κ–self amplitude modulation coefficient), on the horizontal axis the dimensionless energy E = ζ κ ζ / α with (ℰ–dimensional energy, ζ–saturation parameter of self-amplitude modulation). The red symbol ⊕ marks the position of an oscillator with our experimental parameters (energy, spectral width, pulse duration before compression, intracavity filter, losses, cavity length, fiber nonlinearity) on the master diagram. Some immeasurable values such as the self-amplitude modulation parameters κ and ζ are estimated from the experimental data. (b) Typical spectra (dashed lines) and spectral chirps (solid lines) obtained in the regions A (magenta, low energy), B (red, intermediate energy), and C (blue, high energy).

Fig. 3
Fig. 3

SH-FROG characterization of the output pulses from the main output port with the broadest unstructured spectrum and an energy of 7.5 nJ. (a) Measured SH-FROG trace. (b) Reconstructed spectrum and spectral phase. (c) Reconstructed temporal profile and temporal phase. The difference between the measured temporal profile and the Fourier limited pulse can be attributed – i. to a small residual higher order chirp after compression with the diffraction gratings, and – ii. to a small secondary pulse due to excess nonlinearities in the oscillator.

Fig. 4
Fig. 4

SH-FROG characterization of the uncompressed output pulses from the NPE output port (2.5 nJ pulse energy, a–c) and the main output port (7 nJ pulse energy, d–f). (a,d) Measured SH-FROG trace. (b,e) Reconstructed spectra. (c,f) Reconstructed temporal profiles. The modulation on the spectra from both outputs indicates some secondary pulses after compression may be expected due to excess nonlinearities in the oscillator.

Fig. 5
Fig. 5

SH-FROG characterization of the compressed output pulses from the NPE output port (2.5 nJ pulse energy, a–c) and the main output port (7 nJ pulse energy, d–f). (a,d) Measured SH-FROG trace. (b,e) Reconstructed spectrum and spectral phase. (c,f) Reconstructed temporal profile and temporal phase. The pulse cleaning effect of the NPE port can be clearly noticed when comparing panels (a) and (d), or (c) and (f). While the spectral width of the pulses output from the NPE port is slightly larger, and the pulses are compressed to a slightly shorter duration, a long extending series of pre- and/or post-pulses is observed. Only one weak pre-pulse and one weak post-pulse are visible from the main output port.

Metrics