Abstract

An optimized two-mode optical fiber (TMF) with the graded index (GI) profile is designed and fabricated. We clarify an appropriate region of GI-TMF satisfying DMD = 0 ps/km, the large effective area Aeff, and the low bending loss for LP11 at 1550 nm. According to our fiber design, GI-TMF is successfully fabricated to have the large effective area Aeff of 150 μm2 for LP01 mode, and low DMD below 36 ps/km including zero in the C-band. We expect that our design GI-TMF is suitable for MDM and can reduce MIMO-DSP complexity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New generation optical infrastructure technologies: “EXAT Initiative” Towards 2020 and Beyond,” in Proceedings of 14th OptoElectronics and Communications Conference (OECC 2009), paper FT4.
  2. R. Ryf, A. H. S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol.30, 521–531 (2012).
  3. N. Bai, E. Ip, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H. Y. Tam, C. Lu, Y. Luo, G. D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express20(3), 2668–2680 (2012).
    [CrossRef] [PubMed]
  4. T. Sakamoto, T. Mori, T. Yamamoto, and S. Tomita, “Differential delay managed transmission line for wide-band WDM-MIMO system,” in Proceedings of 38th Optical Fiber Communication (OFC 2012), paper OM2D.1.
    [CrossRef]
  5. L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, R. Lingle, and B. Palsdottir, “Few mode transmission fiber with low DGD, low mode coupling and low loss,” in Proceedings of 38th Optical Fiber Communication (OFC 2012), PDP5A.1.
  6. R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “Mode dispersion compensating optical transmission line composed of two-mode optical fibers,” in Proceedings of 38th Optical Fiber Communication (OFC 2012), paper JW2A.13.
  7. R. Maruyama, M. Ohashi, S. Matsuo, K. Sato, and N. Kuwaki, “Novel two-mode optical fiber with low DMD and large Aeff for MIMO processing,” in Proceedings of 17th Optoelectronics and Communication conference (OECC 2012), PDP2–3.
  8. K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quant. Elect. 17(6), 1057–1063 (1981).
  9. L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” The Bell System Technical Journal July-August, (1980).
  10. M. Ohashi, N. Kuwaki, C. Tanaka, N. Uesugi, and Y. Negishi, “Bend-optimized dispersion-shifted step-shaped-index (SSI) fibres,” Electron. Lett.22(24), 1285–1286 (1986).
    [CrossRef]
  11. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quant. Elect38, (2002).
  12. J.-I. Sakai and H. Niiro, “Confinement loss evaluation based on a multilayer division method in Bragg fibers,” Opt. Express16(3), 1885–1902 (2008).
    [CrossRef] [PubMed]
  13. IEC60793–1-44.
  14. N. Shibata, M. Tateda, S. Seikai, and N. Uchida, “Spatial technique for measuring modal delay differences in a dual-mode optical fiber,” Appl. Opt.19(9), 1489–1492 (1980).
    [CrossRef] [PubMed]

2012 (2)

2008 (1)

2002 (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quant. Elect38, (2002).

1986 (1)

M. Ohashi, N. Kuwaki, C. Tanaka, N. Uesugi, and Y. Negishi, “Bend-optimized dispersion-shifted step-shaped-index (SSI) fibres,” Electron. Lett.22(24), 1285–1286 (1986).
[CrossRef]

1981 (1)

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quant. Elect. 17(6), 1057–1063 (1981).

1980 (1)

Bai, N.

Bickham, S.

Bolle, C.

Burrows, E. C.

Esmaeelpour, M.

Essiambre, R.

Gnauck, A. H.

Huang, Y. K.

Ip, E.

Kato, Y.

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quant. Elect. 17(6), 1057–1063 (1981).

Kitayama, K.

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quant. Elect. 17(6), 1057–1063 (1981).

Koshiba, M.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quant. Elect38, (2002).

Kuwaki, N.

M. Ohashi, N. Kuwaki, C. Tanaka, N. Uesugi, and Y. Negishi, “Bend-optimized dispersion-shifted step-shaped-index (SSI) fibres,” Electron. Lett.22(24), 1285–1286 (1986).
[CrossRef]

Lau, A. P. T.

Li, G.

Li, M. J.

Liñares, J.

Lingle, R.

Lu, C.

Luo, Y.

Man Chung, K.

Mateo, E.

McCurdy, A. H.

Montero, C.

Moreno, V.

Mumtaz, S.

Negishi, Y.

M. Ohashi, N. Kuwaki, C. Tanaka, N. Uesugi, and Y. Negishi, “Bend-optimized dispersion-shifted step-shaped-index (SSI) fibres,” Electron. Lett.22(24), 1285–1286 (1986).
[CrossRef]

Niiro, H.

Ohashi, M.

M. Ohashi, N. Kuwaki, C. Tanaka, N. Uesugi, and Y. Negishi, “Bend-optimized dispersion-shifted step-shaped-index (SSI) fibres,” Electron. Lett.22(24), 1285–1286 (1986).
[CrossRef]

Peckham, D. W.

Peng, G. D.

Prieto, X.

Randel, A. H. S.

Ryf, R.

Saitoh, K.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quant. Elect38, (2002).

Sakai, J.-I.

Seikai, S.

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quant. Elect. 17(6), 1057–1063 (1981).

N. Shibata, M. Tateda, S. Seikai, and N. Uchida, “Spatial technique for measuring modal delay differences in a dual-mode optical fiber,” Appl. Opt.19(9), 1489–1492 (1980).
[CrossRef] [PubMed]

Shibata, N.

Sierra, A.

Tam, H. Y.

Tanaka, C.

M. Ohashi, N. Kuwaki, C. Tanaka, N. Uesugi, and Y. Negishi, “Bend-optimized dispersion-shifted step-shaped-index (SSI) fibres,” Electron. Lett.22(24), 1285–1286 (1986).
[CrossRef]

Tateda, M.

Ten, S.

Tse, V.

Uchida, N.

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quant. Elect. 17(6), 1057–1063 (1981).

N. Shibata, M. Tateda, S. Seikai, and N. Uchida, “Spatial technique for measuring modal delay differences in a dual-mode optical fiber,” Appl. Opt.19(9), 1489–1492 (1980).
[CrossRef] [PubMed]

Uesugi, N.

M. Ohashi, N. Kuwaki, C. Tanaka, N. Uesugi, and Y. Negishi, “Bend-optimized dispersion-shifted step-shaped-index (SSI) fibres,” Electron. Lett.22(24), 1285–1286 (1986).
[CrossRef]

Wang, T.

Winzer, P. J.

Yaman, F.

Appl. Opt. (1)

Electron. Lett. (1)

M. Ohashi, N. Kuwaki, C. Tanaka, N. Uesugi, and Y. Negishi, “Bend-optimized dispersion-shifted step-shaped-index (SSI) fibres,” Electron. Lett.22(24), 1285–1286 (1986).
[CrossRef]

IEEE J. Quant. Elect (2)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quant. Elect38, (2002).

K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quant. Elect. 17(6), 1057–1063 (1981).

J. Lightwave Technol. (1)

Opt. Express (2)

Other (7)

L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” The Bell System Technical Journal July-August, (1980).

T. Morioka, “New generation optical infrastructure technologies: “EXAT Initiative” Towards 2020 and Beyond,” in Proceedings of 14th OptoElectronics and Communications Conference (OECC 2009), paper FT4.

IEC60793–1-44.

T. Sakamoto, T. Mori, T. Yamamoto, and S. Tomita, “Differential delay managed transmission line for wide-band WDM-MIMO system,” in Proceedings of 38th Optical Fiber Communication (OFC 2012), paper OM2D.1.
[CrossRef]

L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, R. Lingle, and B. Palsdottir, “Few mode transmission fiber with low DGD, low mode coupling and low loss,” in Proceedings of 38th Optical Fiber Communication (OFC 2012), PDP5A.1.

R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “Mode dispersion compensating optical transmission line composed of two-mode optical fibers,” in Proceedings of 38th Optical Fiber Communication (OFC 2012), paper JW2A.13.

R. Maruyama, M. Ohashi, S. Matsuo, K. Sato, and N. Kuwaki, “Novel two-mode optical fiber with low DMD and large Aeff for MIMO processing,” in Proceedings of 17th Optoelectronics and Communication conference (OECC 2012), PDP2–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Refractive index profile of the graded index fiber.

Fig. 2
Fig. 2

DMD characteristics of GI at 1550 nm.

Fig. 3
Fig. 3

The maximum value of DMD for α over the entire C band.

Fig. 4
Fig. 4

Relationship between Δ and bending loss for LP11 mode at 1550 nm as a function of α.

Fig. 5
Fig. 5

Relationship between Δ and of Aeff for LP01 at 1550 nm as a function of α.

Fig. 6
Fig. 6

The region satisfying our requirements (DMD = 0 at 1550 nm, Aeff ≧150 μm2 for LP01 and bending loss for LP11 ≦0.01 dB/km at R = 40 mm).

Fig. 7
Fig. 7

Refractive index profile of fabricated GI-TMF measured by RNFP (The broken line represents the fitted line by Eq. (1).).

Fig. 8
Fig. 8

Measured spectral loss in bending method.

Fig. 9
Fig. 9

Experimental setup of bending loss for LP11 mode measurement.

Fig. 10
Fig. 10

Measured result of bending loss for LP11 at the radius of 15, 17 and 20 mm.

Fig. 11
Fig. 11

Experimental setup of DMD measurement.

Fig. 12
Fig. 12

Interference spectrum of GI-TMF at 100 m.

Fig. 13
Fig. 13

Absolute DMD property as a function of wavelength.

Tables (2)

Tables Icon

Table 1 Structural parameters of the fabricated GI-TMF

Tables Icon

Table 2 Optical properties of fabricated GI-TMF at λ = 1550 nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n(r)={ n 1 [ 12Δ(r/a) α ] 1/2 0ra n 2 ra
T=kan1 2Δ /Α
|DMD|= λ 0 2 |Δλ|cL

Metrics