Abstract

We report a simple method to prepare an array of polarization converters using a twisted-azimuthal nematic liquid crystal (NLC) in cylindrical polymer cavities. When a NLC is filled in a cylindrical polymer cavity, LC in the cavity presents concentrically circular orientations. By treating LC on one side of the cavity with homogeneous alignment, a twisted-azimuthal texture is formed. Such a LC texture can convert a linear polarization light to either radial or azimuthal polarization light depending on the polarization direction of the incident light. The LC surface on the other side of the cavity is convex, so the light after passing through the cavity can be focused as well. The LC texture can be fixed firmly using polymer network. In comparison with previous polarization converters, our polarization converter has the merits of individually miniature size, array of pattern, and lens character. Our polarization converter array has potential applications in tight focusing, imaging, and material processing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt.36(1), 125–135 (1997).
    [CrossRef] [PubMed]
  2. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A.94(10), 4853–4860 (1997).
    [CrossRef] [PubMed]
  3. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
    [CrossRef] [PubMed]
  5. E. Y. S. Yew and C. J. R. Sheppard, “Tight focusing of radially polarized Gaussian and Bessel-Gauss beams,” Opt. Lett.32(23), 3417–3419 (2007).
    [CrossRef] [PubMed]
  6. H. Guo, X. Weng, M. Jiang, Y. Zhao, G. Sui, Q. Hu, Y. Wang, and S. Zhuang, “Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters,” Opt. Express21(5), 5363–5372 (2013).
    [CrossRef] [PubMed]
  7. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radiallyand azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
    [CrossRef]
  8. L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom.13(2), 195–203 (1997).
    [CrossRef]
  9. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
    [CrossRef]
  10. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D33(15), 1817–1822 (2000).
    [CrossRef]
  11. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett.32(11), 1468–1470 (2007).
    [CrossRef] [PubMed]
  12. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt.29(15), 2234–2239 (1990).
    [CrossRef] [PubMed]
  13. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett.27(5), 285–287 (2002).
    [CrossRef] [PubMed]
  14. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
    [CrossRef]
  15. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  16. Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express13(12), 4638–4644 (2005).
    [CrossRef] [PubMed]
  17. H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
    [CrossRef]
  18. S. C. McEldowney, D. M. Shemo, and R. A. Chipman, “Vortex retarders produced from photo-aligned liquid crystal polymers,” Opt. Express16(10), 7295–7308 (2008).
    [CrossRef] [PubMed]
  19. S.-W. Ko, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Polarization converters based on axially symmetric twisted nematic liquid crystal,” Opt. Express18(4), 3601–3607 (2010).
    [CrossRef] [PubMed]
  20. Y.-D. Chen, A. Y.-G. Fuh, C.-K. Liu, and K.-T. Cheng, “Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film,” J. Phys. D44(21), 215304 (2011).
    [CrossRef]
  21. M. Xu, K. Park, C. Nah, M.-H. Lee, and H. Ren, “Liquid crystal polarization converters using circular-buffed polystyrene film,” Jpn. J. Appl. Phys.50(10), 102205 (2011).
    [CrossRef]
  22. F. Fan, T. Du, A. K. Srivastava, W. Lu, V. Chigrinov, and H. S. Kwok, “Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate,” Opt. Express20(21), 23036–23043 (2012).
    [CrossRef] [PubMed]
  23. P. Drzaic, “A new director alignment for droplets of nematicliquid crystal with low bend-to-splay ratio,” Mol. Cryst. Lip. Cryst.154(1), 289–306 (1988).
  24. Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express16(6), 3768–3775 (2008).
    [CrossRef] [PubMed]
  25. E. Smela and L. J. Martínez‐Miranda, “Effect of substrate preparation on smectic liquid crystal alignment: A structural study,” J. Appl. Phys.73(7), 3299–3304 (1993).
    [CrossRef]
  26. P. G. de Gennes, The Physics ofLiquid Crystals(Clarendon, 1974).
  27. P. Yeh and C. Gu, Optics of Liquid Crystal Displays(Wiley 1999).

2013 (1)

2012 (1)

2011 (2)

Y.-D. Chen, A. Y.-G. Fuh, C.-K. Liu, and K.-T. Cheng, “Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film,” J. Phys. D44(21), 215304 (2011).
[CrossRef]

M. Xu, K. Park, C. Nah, M.-H. Lee, and H. Ren, “Liquid crystal polarization converters using circular-buffed polystyrene film,” Jpn. J. Appl. Phys.50(10), 102205 (2011).
[CrossRef]

2010 (1)

2008 (2)

2007 (3)

2006 (1)

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (2)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D33(15), 1817–1822 (2000).
[CrossRef]

1997 (3)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A.94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom.13(2), 195–203 (1997).
[CrossRef]

A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt.36(1), 125–135 (1997).
[CrossRef] [PubMed]

1996 (1)

1993 (1)

E. Smela and L. J. Martínez‐Miranda, “Effect of substrate preparation on smectic liquid crystal alignment: A structural study,” J. Appl. Phys.73(7), 3299–3304 (1993).
[CrossRef]

1990 (1)

1989 (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

1988 (1)

P. Drzaic, “A new director alignment for droplets of nematicliquid crystal with low bend-to-splay ratio,” Mol. Cryst. Lip. Cryst.154(1), 289–306 (1988).

Andreou, A.

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom.13(2), 195–203 (1997).
[CrossRef]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A.94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

Biener, G.

Bigio, I. J.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Bomzon, Z.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett.27(5), 285–287 (2002).
[CrossRef] [PubMed]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Chen, Y.-D.

Y.-D. Chen, A. Y.-G. Fuh, C.-K. Liu, and K.-T. Cheng, “Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film,” J. Phys. D44(21), 215304 (2011).
[CrossRef]

Cheng, K.-T.

Y.-D. Chen, A. Y.-G. Fuh, C.-K. Liu, and K.-T. Cheng, “Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film,” J. Phys. D44(21), 215304 (2011).
[CrossRef]

Chigrinov, V.

Chipman, R. A.

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Drzaic, P.

P. Drzaic, “A new director alignment for droplets of nematicliquid crystal with low bend-to-splay ratio,” Mol. Cryst. Lip. Cryst.154(1), 289–306 (1988).

Du, T.

Fan, F.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radiallyand azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Ford, D. H.

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Fuh, A. Y.-G.

Guo, H.

Hasma, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Hasman, E.

Hielscher, A. H.

Hu, Q.

Jackel, S.

Jiang, M.

Ke, S.-W.

Kimura, W. D.

Kleiner, V.

Ko, S.-W.

Kwok, H. S.

Lee, J.-H.

Lee, M.-H.

M. Xu, K. Park, C. Nah, M.-H. Lee, and H. Ren, “Liquid crystal polarization converters using circular-buffed polystyrene film,” Jpn. J. Appl. Phys.50(10), 102205 (2011).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Lin, T. H.

Lin, T.-H.

Lin, Y. H.

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

Lin, Y.-H.

Liu, C.-K.

Y.-D. Chen, A. Y.-G. Fuh, C.-K. Liu, and K.-T. Cheng, “Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film,” J. Phys. D44(21), 215304 (2011).
[CrossRef]

Lu, W.

Lumer, Y.

Machavariani, G.

Mancini, T.

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom.13(2), 195–203 (1997).
[CrossRef]

Martínez-Miranda, L. J.

E. Smela and L. J. Martínez‐Miranda, “Effect of substrate preparation on smectic liquid crystal alignment: A structural study,” J. Appl. Phys.73(7), 3299–3304 (1993).
[CrossRef]

McEldowney, S. C.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radiallyand azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Meir, A.

Moshe, I.

Mourant, J. R.

Nah, C.

M. Xu, K. Park, C. Nah, M.-H. Lee, and H. Ren, “Liquid crystal polarization converters using circular-buffed polystyrene film,” Jpn. J. Appl. Phys.50(10), 102205 (2011).
[CrossRef]

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D33(15), 1817–1822 (2000).
[CrossRef]

Nie, X.

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D33(15), 1817–1822 (2000).
[CrossRef]

Nose, T.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

Park, K.

M. Xu, K. Park, C. Nah, M.-H. Lee, and H. Ren, “Liquid crystal polarization converters using circular-buffed polystyrene film,” Jpn. J. Appl. Phys.50(10), 102205 (2011).
[CrossRef]

Pouliquen, P.

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom.13(2), 195–203 (1997).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Ren, H.

M. Xu, K. Park, C. Nah, M.-H. Lee, and H. Ren, “Liquid crystal polarization converters using circular-buffed polystyrene film,” Jpn. J. Appl. Phys.50(10), 102205 (2011).
[CrossRef]

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express13(12), 4638–4644 (2005).
[CrossRef] [PubMed]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radiallyand azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Sato, S.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

Schadt, M.

Shemo, D. M.

Sheppard, C. J. R.

Smela, E.

E. Smela and L. J. Martínez‐Miranda, “Effect of substrate preparation on smectic liquid crystal alignment: A structural study,” J. Appl. Phys.73(7), 3299–3304 (1993).
[CrossRef]

Srivastava, A. K.

Stalder, M.

Sui, G.

Tidwell, S. C.

Ting, C.-L.

Tzeng, Y.-Y.

Wang, Y.

Weng, X.

Wolff, L.

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom.13(2), 195–203 (1997).
[CrossRef]

Wu, S. T.

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S. T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express13(12), 4638–4644 (2005).
[CrossRef] [PubMed]

Wu, Y.-H.

Xu, M.

M. Xu, K. Park, C. Nah, M.-H. Lee, and H. Ren, “Liquid crystal polarization converters using circular-buffed polystyrene film,” Jpn. J. Appl. Phys.50(10), 102205 (2011).
[CrossRef]

Yamaguchi, R.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

Yew, E. Y. S.

Zhan, Q.

Zhao, Y.

Zhuang, S.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasma, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000).
[CrossRef]

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radiallyand azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

IEEE Trans. Robot. Autom. (1)

L. Wolff, T. Mancini, P. Pouliquen, and A. Andreou, “Liquid crystal polarization camera,” IEEE Trans. Robot. Autom.13(2), 195–203 (1997).
[CrossRef]

J. Appl. Phys. (1)

E. Smela and L. J. Martínez‐Miranda, “Effect of substrate preparation on smectic liquid crystal alignment: A structural study,” J. Appl. Phys.73(7), 3299–3304 (1993).
[CrossRef]

J. Phys. D (2)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D33(15), 1817–1822 (2000).
[CrossRef]

Y.-D. Chen, A. Y.-G. Fuh, C.-K. Liu, and K.-T. Cheng, “Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film,” J. Phys. D44(21), 215304 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Xu, K. Park, C. Nah, M.-H. Lee, and H. Ren, “Liquid crystal polarization converters using circular-buffed polystyrene film,” Jpn. J. Appl. Phys.50(10), 102205 (2011).
[CrossRef]

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

Mol. Cryst. Lip. Cryst. (1)

P. Drzaic, “A new director alignment for droplets of nematicliquid crystal with low bend-to-splay ratio,” Mol. Cryst. Lip. Cryst.154(1), 289–306 (1988).

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A.94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

Other (2)

P. G. de Gennes, The Physics ofLiquid Crystals(Clarendon, 1974).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays(Wiley 1999).

Supplementary Material (2)

» Media 1: MOV (1176 KB)     
» Media 2: MOV (1217 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The fabrication of a polymer cavity on one substrate surface and a method to fill LC in the cavity. (a) UV monomer film coated on a substrate, (b) photomask placing above the film, (c) UV exposure, (d) a polymer cavity, (e) a mixture filled in the cavity, and (f) LC remained in the cavity.

Fig. 2
Fig. 2

LC in a polymeric cavity and possible alignment from the top view. (a) crosshair pattern observed between crossed polarizers, (b) radial texture, and (c) azimuthal texture.

Fig. 3
Fig. 3

LC in a cell chamber and light intensity patterns observed between the polarizer and analyzer. (a) the cross-sectional cell structure. The PI layer coated on the bottom substrate surface was buffed in one direction. (b)(Media 1), (c), and (d) show the observed intensity patterns by setting the axis of the analyzer to be 0°, 45°, and 90° with that of the polarizer, respectively.

Fig. 4
Fig. 4

The output light intensity pattern of a polarized light beam after passing through a linear analyzer. (a) azimuthal polarization light and (b) radial polarization light.

Fig. 5
Fig. 5

LC in the cell aligned by the substrate and polymeric cavity surfaces. (a) xyz coordinate definition, (b) 90° twisted alignment in xoz plane, and (c) homogeneous alignment in yoz plane.

Fig. 6
Fig. 6

Linear polarization light converting to (a) azimuthal polarization light and (b) radial polarization light after passing through an azimuthal-twisted LC in the polymer cavity.

Fig. 7
Fig. 7

The light intensity patterns observed by setting the polarization direction of the analyzer with (a) 0°(Media 2),(b)45°, and (c)90° with that of the polarizer.

Fig. 8
Fig. 8

Experimental set up and the recorded output beam intensity. (a) simple setup, (b) 2D intensity spot, and (c) 3D intensity profile.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

φ<<2πdΔn/λ
λ<<4dΔn

Metrics