Abstract

Optical fiber tweezers based on a graded-index multimode fiber (GIMMF) tip is proposed. Light propagation characteristics and gradient force distribution near the GIMMF tip are numerically investigated, which are further compared with that of optical fiber tips based on conventional single mode fibers. The simulated results indicated that by selecting optimal GIMMF length, the gradient force of the GIMMF tip tweezers is about 4 times higher than that of the SMF tip tweezers with a same shape. To prove the feasibility of such a new concept, optical trapping of yeast cells with a diameter of ~5 μm using the chemically-etched GIMMF tip is experimentally demonstrated and the trapping force is also calculated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  4. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express14(25), 12510–12516 (2006).
    [CrossRef] [PubMed]
  5. L. Yuan, Z. Liu, and J. Yang, “Measurement approach of Brownian motion force by an abrupt tapered fiber optic tweezers,” Appl. Phys. Lett.91(5), 054101 (2007).
    [CrossRef]
  6. L. Yuan, Z. Liu, J. Yang, and C. Guan, “Twin-core fiber optical tweezers,” Opt. Express16(7), 4559–4566 (2008).
    [CrossRef] [PubMed]
  7. G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett.43(4), 204–205 (2007).
    [CrossRef]
  8. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt.13(5), 054049 (2008).
    [CrossRef] [PubMed]
  9. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett.33(18), 2155–2157 (2008).
    [CrossRef] [PubMed]
  10. K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett.92(15), 151113 (2008).
    [CrossRef]
  11. Z. Hu, J. Wang, and J. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express12(17), 4123–4128 (2004).
    [CrossRef] [PubMed]
  12. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
    [CrossRef] [PubMed]
  13. P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express15(24), 16029–16034 (2007).
    [CrossRef] [PubMed]
  14. J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett.84(21), 4289–4291 (2004).
    [CrossRef]
  15. J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett.89(19), 194101 (2006).
    [CrossRef]
  16. C. Liberale, P. Minzioni, F. Bragheri, F. de Angelis, E. di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
    [CrossRef]
  17. F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express16(22), 17647–17653 (2008).
    [CrossRef] [PubMed]
  18. C. Youngchul and D. Nadr, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron.26(8), 1335–1339 (1990).
    [CrossRef]
  19. M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” IEEE/OSA J. Lightw. Tech.13(7), 1200–1221 (1995).
    [CrossRef]
  20. A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
    [CrossRef]
  21. S. Mononobe, R. U. Maheswari, and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe with a nanometric protrusion from a metal film for near-field optical microscopy,” Opt. Express1(8), 229–233 (1997).
    [CrossRef] [PubMed]
  22. Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum.69(2), 437–439 (1998).
    [CrossRef]
  23. P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy61(1-4), 165–170 (1995).
    [CrossRef]
  24. Y. Gong, T. Zhao, Y. J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express18(15), 15844–15852 (2010).
    [CrossRef] [PubMed]

2010

2008

2007

C. Liberale, P. Minzioni, F. Bragheri, F. de Angelis, E. di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

L. Yuan, Z. Liu, and J. Yang, “Measurement approach of Brownian motion force by an abrupt tapered fiber optic tweezers,” Appl. Phys. Lett.91(5), 054101 (2007).
[CrossRef]

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett.43(4), 204–205 (2007).
[CrossRef]

P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express15(24), 16029–16034 (2007).
[CrossRef] [PubMed]

2006

Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express14(25), 12510–12516 (2006).
[CrossRef] [PubMed]

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett.89(19), 194101 (2006).
[CrossRef]

2004

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett.84(21), 4289–4291 (2004).
[CrossRef]

Z. Hu, J. Wang, and J. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express12(17), 4123–4128 (2004).
[CrossRef] [PubMed]

2003

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2001

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

1998

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum.69(2), 437–439 (1998).
[CrossRef]

A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
[CrossRef]

1997

1995

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” IEEE/OSA J. Lightw. Tech.13(7), 1200–1221 (1995).
[CrossRef]

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy61(1-4), 165–170 (1995).
[CrossRef]

1990

C. Youngchul and D. Nadr, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron.26(8), 1335–1339 (1990).
[CrossRef]

1986

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Ashkin, A.

Bareil, P. B.

Berns, M. W.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett.33(18), 2155–2157 (2008).
[CrossRef] [PubMed]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt.13(5), 054049 (2008).
[CrossRef] [PubMed]

Biran, I.

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett.89(19), 194101 (2006).
[CrossRef]

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett.84(21), 4289–4291 (2004).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Bourillot, E.

A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
[CrossRef]

Bragheri, F.

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express16(22), 17647–17653 (2008).
[CrossRef] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. de Angelis, E. di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Brambilla, G.

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett.43(4), 204–205 (2007).
[CrossRef]

Chen, Y. Q.

Chiou, A.

Chu, S.

Chuang, Y. H.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum.69(2), 437–439 (1998).
[CrossRef]

Cristiani, I.

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express16(22), 17647–17653 (2008).
[CrossRef] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. de Angelis, E. di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

David, T.

A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
[CrossRef]

de Angelis, F.

C. Liberale, P. Minzioni, F. Bragheri, F. de Angelis, E. di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Degiorgio, V.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett.92(15), 151113 (2008).
[CrossRef]

Di Fabrizio, E.

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express16(22), 17647–17653 (2008).
[CrossRef] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. de Angelis, E. di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Dutoit, B.

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy61(1-4), 165–170 (1995).
[CrossRef]

Dziedzic, J. M.

Emonin, S.

A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
[CrossRef]

Gong, Y.

Goudonnet, J. P.

A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guan, C.

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Guo, C.

Guo, Y.

Hoffmann, P.

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy61(1-4), 165–170 (1995).
[CrossRef]

Hu, Z.

Huang, J. Y.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum.69(2), 437–439 (1998).
[CrossRef]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Klini, A.

A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
[CrossRef]

Kotrotsios, G.

A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
[CrossRef]

Liang, J.

Liberale, C.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett.92(15), 151113 (2008).
[CrossRef]

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express16(22), 17647–17653 (2008).
[CrossRef] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. de Angelis, E. di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Liu, Z.

Maheswari, R. U.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Minzioni, P.

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express16(22), 17647–17653 (2008).
[CrossRef] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. de Angelis, E. di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Mohanty, K. S.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett.33(18), 2155–2157 (2008).
[CrossRef] [PubMed]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett.92(15), 151113 (2008).
[CrossRef]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt.13(5), 054049 (2008).
[CrossRef] [PubMed]

Mohanty, S. K.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt.13(5), 054049 (2008).
[CrossRef] [PubMed]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett.92(15), 151113 (2008).
[CrossRef]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett.33(18), 2155–2157 (2008).
[CrossRef] [PubMed]

Mononobe, S.

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Nadr, D.

C. Youngchul and D. Nadr, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron.26(8), 1335–1339 (1990).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Ohtsu, M.

S. Mononobe, R. U. Maheswari, and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe with a nanometric protrusion from a metal film for near-field optical microscopy,” Opt. Express1(8), 229–233 (1997).
[CrossRef] [PubMed]

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” IEEE/OSA J. Lightw. Tech.13(7), 1200–1221 (1995).
[CrossRef]

Pan, C. L.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum.69(2), 437–439 (1998).
[CrossRef]

Papadopoulos, P.

A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
[CrossRef]

Rao, Y. J.

Salathe, R. P.

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy61(1-4), 165–170 (1995).
[CrossRef]

Sheng, Y.

Sun, K. G.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum.69(2), 437–439 (1998).
[CrossRef]

Tam, J. M.

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett.89(19), 194101 (2006).
[CrossRef]

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett.84(21), 4289–4291 (2004).
[CrossRef]

Walt, D. R.

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett.89(19), 194101 (2006).
[CrossRef]

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett.84(21), 4289–4291 (2004).
[CrossRef]

Wang, C. J.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum.69(2), 437–439 (1998).
[CrossRef]

Wang, J.

Wu, Y.

Xu, F.

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett.43(4), 204–205 (2007).
[CrossRef]

Yang, J.

Youngchul, C.

C. Youngchul and D. Nadr, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron.26(8), 1335–1339 (1990).
[CrossRef]

Yuan, L.

Zhao, T.

Appl. Phys. Lett.

L. Yuan, Z. Liu, and J. Yang, “Measurement approach of Brownian motion force by an abrupt tapered fiber optic tweezers,” Appl. Phys. Lett.91(5), 054101 (2007).
[CrossRef]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett.92(15), 151113 (2008).
[CrossRef]

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett.84(21), 4289–4291 (2004).
[CrossRef]

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett.89(19), 194101 (2006).
[CrossRef]

Biophys. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Electron. Lett.

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett.43(4), 204–205 (2007).
[CrossRef]

IEEE J. Quantum Electron.

C. Youngchul and D. Nadr, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron.26(8), 1335–1339 (1990).
[CrossRef]

IEEE/OSA J. Lightw. Tech.

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” IEEE/OSA J. Lightw. Tech.13(7), 1200–1221 (1995).
[CrossRef]

A. Klini, T. David, E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” IEEE/OSA J. Lightw. Tech.16(7), 1220–1227 (1998).
[CrossRef]

J. Biomed. Opt.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt.13(5), 054049 (2008).
[CrossRef] [PubMed]

Nat. Photonics

C. Liberale, P. Minzioni, F. Bragheri, F. de Angelis, E. di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum.69(2), 437–439 (1998).
[CrossRef]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Ultramicroscopy

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy61(1-4), 165–170 (1995).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (5587 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic diagram of the etched GIMMF taper and (b) Optical intensity distribution near the GIMMF fiber taper

Fig. 2
Fig. 2

Propagation properties along z axis and light intensity distribution along x axis at z = zmax.

Fig. 3
Fig. 3

Light intensity distribution along the X axis when Lm = 446μm, for (a) GIMMF taper and (b) SMF taper.

Fig. 4
Fig. 4

(a) Normalized maximum optical power and (b) working distance as a function of GIMMF length. Curves in different colors correspond to different values of a (the semi-axis of the taper hyperbola), i.e. different shapes of the taper. The black curve in (a) is the power distribution along the GIMMF without a taper, shown as a reference of the period.

Fig. 5
Fig. 5

Normalized maximum optical power and working distance as a function of the shape of GIMMF taper.

Fig. 6
Fig. 6

Gradient force distribution along the transverse direction for (a) the GIMMF tip tweezers and (b) SMF tip tweezers.

Fig. 7
Fig. 7

Chemically etched optical fiber tapers.

Fig. 8
Fig. 8

Experimental setup for the graded-index fiber tip optical tweezers. The optical trapping of a polystyrene microsphere is shown in the inset.

Fig. 9
Fig. 9

Optical trapping of a yeast cell with a diameter of ~5μm with graded-index fiber tip optical tweezers. (Media 1) 5.89Mb.

Tables (1)

Tables Icon

Table 1 Values of parameters used in the numerical simulations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n( r )={ n 1m 12Δ ( r a m ) α , r< a m , n 2m , r a m .
F grad (r)=2π ε 0 n 2 2 r 0 3 ( m 2 1 m 2 +2 )I(r,t).
F=6πηrv.

Metrics