Abstract

We demonstrate a synthesis procedure for designing a bandstop optical frequency selective surface (FSS) composed of nanoparticle (NP) elements. The proposed FSS uses two-dimensional (2-D) periodic arrays of NPs with subwavelength unit-cell dimensions. We derive equivalent circuit for a nanoparticle array (NPA) using the closed-form solution for a 2-D NPA excited by a plane wave in the limit of the dipole approximation, which includes contribution from both individual and collective plasmon modes. Using the extracted equivalent circuit, we demonstrate synthesis of an optical FSS using cascaded NPA layers as coupled resonators, which we validate with both circuit model and full-wave simulation for a third-order Butterworth bandstop prototype.

© 2013 OSA

Full Article  |  PDF Article

Corrections

Chiya Saeidi and Daniel van der Weide, "Nanoparticle array based optical frequency selective surfaces: theory and design: errata," Opt. Express 21, 24119-24119 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-20-24119

References

  • View by:
  • |
  • |
  • |

  1. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2005).
  2. K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat.55, 1239–1245 (2007).
    [CrossRef]
  3. M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antennas and Propagat.57, 452–459 (2009).
    [CrossRef]
  4. S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett.71, 2412–2414 (1997).
    [CrossRef]
  5. H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett.82, 3605–3607 (2003).
    [CrossRef]
  6. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
    [CrossRef]
  7. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92, 263106 (2008).
    [CrossRef]
  8. S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004).
    [CrossRef]
  9. D. Van Labeke, D. Grard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent Frequency Selective Surface in the optical range,” Opt. Express14, 11945–11951 (2006).
    [CrossRef] [PubMed]
  10. G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
    [CrossRef]
  11. J. Zhang, J. Y. Ou, N. Papasimakis, Y. Chen, K. F. MacDonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19, 23279–23285 (2011).
    [CrossRef] [PubMed]
  12. D. H. Werner, T. S. Mayer, and C. R. Baleine, “Multi-spectral filters, mirrors and anti-reflective coatings with subwavelength periodic features for optical devices,” U.S. Patent Application 12/900,967, (April2011).
  13. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285, 3412–3418 (2012).
    [CrossRef]
  14. A. Di Falco, Y. Zhao, and A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett.99, 163110 (2011).
    [CrossRef]
  15. P. C. Li and E. T. Yu, “Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment,” J. Opt. Soc. Am. B30, 27–32 (2013).
    [CrossRef]
  16. C. Saeidi and D. van der Weide, “Spatial filter for optical frequencies using plasmonic metasurfaces,” accepted to IEEE Int. Symp. Antennas and Propagation (APS/URSI) (2013).
  17. B. Memarzadeh and H. Mosallaei, “Layered plasmonic tripods: an infrared frequency selective surface nanofilter,” J. Opt. Soc. Am. B29, 2347–2351 (2012).
    [CrossRef]
  18. A. Alu and N. Engheta, “Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles,” in Structured Surfaces as Optical Metamaterials, A. A. Maradudin, ed. (Cambridge University, 2011), pp. 58–93.
    [CrossRef]
  19. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House Publishers, 2003).
  20. A. S. Kumbhar, M. K Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc.127, 12444–12445 (2005).
    [CrossRef] [PubMed]
  21. W. H. Eggimann and R. E. Collin, “Dynamic interaction fields in a two-dimensional lattice,” IEEE Trans. Microwave Theory Tech.9, 110–115 (1961).
    [CrossRef]
  22. S. I. Maslovski and S. A. Tretyakov, “Full-wave interaction field in two-dimensional arrays of dipole scatterers,” Int. J. Electron. Commun.53, 135–139 (1999).
  23. Y. R. Zhen, K. H. Fung, and C. T. Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B78, 035419 (2008).
    [CrossRef]
  24. R. E. Collin, Field Theory of Guided Waves (IEEE, 1991).
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
    [CrossRef]
  26. P. G. Kik, A. Maier, and H. A. Atwater, “Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,” Phys. Rev. B69, 045418 (2004).
    [CrossRef]
  27. J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B71, 045404 (2005).
    [CrossRef]
  28. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, 1964).

2013 (1)

P. C. Li and E. T. Yu, “Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment,” J. Opt. Soc. Am. B30, 27–32 (2013).
[CrossRef]

2012 (2)

B. Memarzadeh and H. Mosallaei, “Layered plasmonic tripods: an infrared frequency selective surface nanofilter,” J. Opt. Soc. Am. B29, 2347–2351 (2012).
[CrossRef]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285, 3412–3418 (2012).
[CrossRef]

2011 (3)

A. Di Falco, Y. Zhao, and A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett.99, 163110 (2011).
[CrossRef]

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

J. Zhang, J. Y. Ou, N. Papasimakis, Y. Chen, K. F. MacDonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19, 23279–23285 (2011).
[CrossRef] [PubMed]

2009 (1)

M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antennas and Propagat.57, 452–459 (2009).
[CrossRef]

2008 (2)

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92, 263106 (2008).
[CrossRef]

Y. R. Zhen, K. H. Fung, and C. T. Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B78, 035419 (2008).
[CrossRef]

2007 (1)

K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat.55, 1239–1245 (2007).
[CrossRef]

2006 (2)

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
[CrossRef]

D. Van Labeke, D. Grard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent Frequency Selective Surface in the optical range,” Opt. Express14, 11945–11951 (2006).
[CrossRef] [PubMed]

2005 (2)

A. S. Kumbhar, M. K Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc.127, 12444–12445 (2005).
[CrossRef] [PubMed]

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B71, 045404 (2005).
[CrossRef]

2004 (2)

P. G. Kik, A. Maier, and H. A. Atwater, “Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,” Phys. Rev. B69, 045418 (2004).
[CrossRef]

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004).
[CrossRef]

2003 (1)

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett.82, 3605–3607 (2003).
[CrossRef]

1999 (1)

S. I. Maslovski and S. A. Tretyakov, “Full-wave interaction field in two-dimensional arrays of dipole scatterers,” Int. J. Electron. Commun.53, 135–139 (1999).

1997 (1)

S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett.71, 2412–2414 (1997).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
[CrossRef]

1961 (1)

W. H. Eggimann and R. E. Collin, “Dynamic interaction fields in a two-dimensional lattice,” IEEE Trans. Microwave Theory Tech.9, 110–115 (1961).
[CrossRef]

Al-Joumayly, M.

M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antennas and Propagat.57, 452–459 (2009).
[CrossRef]

Alu, A.

A. Di Falco, Y. Zhao, and A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett.99, 163110 (2011).
[CrossRef]

A. Alu and N. Engheta, “Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles,” in Structured Surfaces as Optical Metamaterials, A. A. Maradudin, ed. (Cambridge University, 2011), pp. 58–93.
[CrossRef]

Atwater, H. A.

P. G. Kik, A. Maier, and H. A. Atwater, “Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,” Phys. Rev. B69, 045418 (2004).
[CrossRef]

Baida, F. I.

Baleine, C. R.

D. H. Werner, T. S. Mayer, and C. R. Baleine, “Multi-spectral filters, mirrors and anti-reflective coatings with subwavelength periodic features for optical devices,” U.S. Patent Application 12/900,967, (April2011).

Behdad, N.

M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antennas and Propagat.57, 452–459 (2009).
[CrossRef]

K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat.55, 1239–1245 (2007).
[CrossRef]

Bilotti, F.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285, 3412–3418 (2012).
[CrossRef]

Bossard, J. A.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92, 263106 (2008).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
[CrossRef]

Chan, C. T.

Y. R. Zhen, K. H. Fung, and C. T. Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B78, 035419 (2008).
[CrossRef]

Chen, Y.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
[CrossRef]

Chumanov, G.

A. S. Kumbhar, M. K Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc.127, 12444–12445 (2005).
[CrossRef] [PubMed]

Collin, R. E.

W. H. Eggimann and R. E. Collin, “Dynamic interaction fields in a two-dimensional lattice,” IEEE Trans. Microwave Theory Tech.9, 110–115 (1961).
[CrossRef]

R. E. Collin, Field Theory of Guided Waves (IEEE, 1991).

Danner, A. J.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

Di Falco, A.

A. Di Falco, Y. Zhao, and A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett.99, 163110 (2011).
[CrossRef]

Drupp, R. P.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
[CrossRef]

East, J.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004).
[CrossRef]

Eggimann, W. H.

W. H. Eggimann and R. E. Collin, “Dynamic interaction fields in a two-dimensional lattice,” IEEE Trans. Microwave Theory Tech.9, 110–115 (1961).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, “Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles,” in Structured Surfaces as Optical Metamaterials, A. A. Maradudin, ed. (Cambridge University, 2011), pp. 58–93.
[CrossRef]

Fung, K. H.

Y. R. Zhen, K. H. Fung, and C. T. Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B78, 035419 (2008).
[CrossRef]

Govindaswamy, S.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004).
[CrossRef]

Grard, D.

Guizal, B.

Gupta, S.

S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett.71, 2412–2414 (1997).
[CrossRef]

Haddad, G. I.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004).
[CrossRef]

Ho, K. M.

S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett.71, 2412–2414 (1997).
[CrossRef]

Huang, J. P.

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B71, 045404 (2005).
[CrossRef]

Huang, T. J.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
[CrossRef]

Jones, E. M. T.

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, 1964).

Kik, P. G.

P. G. Kik, A. Maier, and H. A. Atwater, “Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,” Phys. Rev. B69, 045418 (2004).
[CrossRef]

Kinnan, M. K

A. S. Kumbhar, M. K Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc.127, 12444–12445 (2005).
[CrossRef] [PubMed]

Kumbhar, A. S.

A. S. Kumbhar, M. K Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc.127, 12444–12445 (2005).
[CrossRef] [PubMed]

Li, L.

D. Van Labeke, D. Grard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent Frequency Selective Surface in the optical range,” Opt. Express14, 11945–11951 (2006).
[CrossRef] [PubMed]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
[CrossRef]

Li, P. C.

P. C. Li and E. T. Yu, “Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment,” J. Opt. Soc. Am. B30, 27–32 (2013).
[CrossRef]

Liu, H.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

MacDonald, K. F.

Maier, A.

P. G. Kik, A. Maier, and H. A. Atwater, “Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,” Phys. Rev. B69, 045418 (2004).
[CrossRef]

Maslovski, S. I.

S. I. Maslovski and S. A. Tretyakov, “Full-wave interaction field in two-dimensional arrays of dipole scatterers,” Int. J. Electron. Commun.53, 135–139 (1999).

Matthaei, G. L.

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, 1964).

Mayer, T. S.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92, 263106 (2008).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
[CrossRef]

D. H. Werner, T. S. Mayer, and C. R. Baleine, “Multi-spectral filters, mirrors and anti-reflective coatings with subwavelength periodic features for optical devices,” U.S. Patent Application 12/900,967, (April2011).

Memarzadeh, B.

Monti, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285, 3412–3418 (2012).
[CrossRef]

Mosallaei, H.

Munk, B. A.

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2005).

Ou, J. Y.

Papasimakis, N.

Rebbert, M.

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett.82, 3605–3607 (2003).
[CrossRef]

Saeidi, C.

C. Saeidi and D. van der Weide, “Spatial filter for optical frequencies using plasmonic metasurfaces,” accepted to IEEE Int. Symp. Antennas and Propagation (APS/URSI) (2013).

Sarabandi, K.

K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat.55, 1239–1245 (2007).
[CrossRef]

Si, G.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

Sigalas, M.

S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett.71, 2412–2414 (1997).
[CrossRef]

Smith, H. A.

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett.82, 3605–3607 (2003).
[CrossRef]

Smith, J. A.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
[CrossRef]

Sternberg, O.

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett.82, 3605–3607 (2003).
[CrossRef]

Tang, Y.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92, 263106 (2008).
[CrossRef]

Tang, Y. U.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
[CrossRef]

Teng, J.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

Teo, S.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

Terry, F.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004).
[CrossRef]

Topsakal, E.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004).
[CrossRef]

Toscano, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285, 3412–3418 (2012).
[CrossRef]

Tretyakov, S.

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House Publishers, 2003).

Tretyakov, S. A.

S. I. Maslovski and S. A. Tretyakov, “Full-wave interaction field in two-dimensional arrays of dipole scatterers,” Int. J. Electron. Commun.53, 135–139 (1999).

Tuttle, G.

S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett.71, 2412–2414 (1997).
[CrossRef]

van der Weide, D.

C. Saeidi and D. van der Weide, “Spatial filter for optical frequencies using plasmonic metasurfaces,” accepted to IEEE Int. Symp. Antennas and Propagation (APS/URSI) (2013).

Van Labeke, D.

Vegni, L.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285, 3412–3418 (2012).
[CrossRef]

Volakis, J. L.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004).
[CrossRef]

Werner, D. H.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92, 263106 (2008).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
[CrossRef]

D. H. Werner, T. S. Mayer, and C. R. Baleine, “Multi-spectral filters, mirrors and anti-reflective coatings with subwavelength periodic features for optical devices,” U.S. Patent Application 12/900,967, (April2011).

Xiao, J. J.

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B71, 045404 (2005).
[CrossRef]

Young, L.

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, 1964).

Yu, E. T.

P. C. Li and E. T. Yu, “Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment,” J. Opt. Soc. Am. B30, 27–32 (2013).
[CrossRef]

Yu, K. W.

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B71, 045404 (2005).
[CrossRef]

Zhang, J.

Zhang, M.

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

Zhao, Y.

A. Di Falco, Y. Zhao, and A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett.99, 163110 (2011).
[CrossRef]

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

Zheludev, N. I.

Zhen, Y. R.

Y. R. Zhen, K. H. Fung, and C. T. Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B78, 035419 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett.71, 2412–2414 (1997).
[CrossRef]

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett.82, 3605–3607 (2003).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92, 263106 (2008).
[CrossRef]

G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, “Annular aperture array based color filter,” Appl. Phys. Lett.99, 033105 (2011).
[CrossRef]

A. Di Falco, Y. Zhao, and A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett.99, 163110 (2011).
[CrossRef]

IEEE Trans. Antennas and Propagat. (3)

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas and Propagat.54, 1265–1276 (2006).
[CrossRef]

K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas and Propagat.55, 1239–1245 (2007).
[CrossRef]

M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antennas and Propagat.57, 452–459 (2009).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

W. H. Eggimann and R. E. Collin, “Dynamic interaction fields in a two-dimensional lattice,” IEEE Trans. Microwave Theory Tech.9, 110–115 (1961).
[CrossRef]

Int. J. Electron. Commun. (1)

S. I. Maslovski and S. A. Tretyakov, “Full-wave interaction field in two-dimensional arrays of dipole scatterers,” Int. J. Electron. Commun.53, 135–139 (1999).

J. Am. Chem. Soc. (1)

A. S. Kumbhar, M. K Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc.127, 12444–12445 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

P. C. Li and E. T. Yu, “Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment,” J. Opt. Soc. Am. B30, 27–32 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett.41, 266–269 (2004).
[CrossRef]

Opt. Commun. (1)

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285, 3412–3418 (2012).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (4)

Y. R. Zhen, K. H. Fung, and C. T. Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B78, 035419 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
[CrossRef]

P. G. Kik, A. Maier, and H. A. Atwater, “Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,” Phys. Rev. B69, 045418 (2004).
[CrossRef]

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B71, 045404 (2005).
[CrossRef]

Other (7)

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, 1964).

A. Alu and N. Engheta, “Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles,” in Structured Surfaces as Optical Metamaterials, A. A. Maradudin, ed. (Cambridge University, 2011), pp. 58–93.
[CrossRef]

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House Publishers, 2003).

R. E. Collin, Field Theory of Guided Waves (IEEE, 1991).

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2005).

C. Saeidi and D. van der Weide, “Spatial filter for optical frequencies using plasmonic metasurfaces,” accepted to IEEE Int. Symp. Antennas and Propagation (APS/URSI) (2013).

D. H. Werner, T. S. Mayer, and C. R. Baleine, “Multi-spectral filters, mirrors and anti-reflective coatings with subwavelength periodic features for optical devices,” U.S. Patent Application 12/900,967, (April2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Real part of dielectric function of silver. open circles from Johnson and Christy [25]. Solid lines are fitted results using (7).

Fig. 2
Fig. 2

(a) equivalent circuit for NP-in-array impedance. (b) network transformation for the equivalent circuit of NPA.

Fig. 3
Fig. 3

Frequency response for three different cases: equivalent circuit, realistic case with parallel capacitor, and realistic case without parallel capacitor.

Fig. 4
Fig. 4

NPA’s collective plasmon resonance frequencies using different host media.

Fig. 5
Fig. 5

Band-stop FSS with shunt branches.

Fig. 6
Fig. 6

Topology of the third-order bandstop FSS of the design example.

Fig. 7
Fig. 7

The effect of dissipation loss in a bandstop filter.

Fig. 8
Fig. 8

FSS frequency response obtained from full-wave EM simulations and those predicted by the equivalent circuit model for the design example.

Fig. 9
Fig. 9

Transmission and reflection coefficients of the designed optical FSS as a function of the angle of incidence for TE and TM polarizations.

Tables (1)

Tables Icon

Table 1 The element values for the low-pass prototype circuit, and the geometrical parameters of the NPAs for the design example.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Z = j a 2 k ( α 1 β ) 1 2
X = a 2 k ( Re { α 1 } Re { β } ) , R = a 2 k ( Im { α 1 β } ) 1 2 .
Im { α 1 β } = k 2 a 2
β = e j k R 0 4 a 2 ( 1 j k R 0 R 0 ) ( 1 j k R 0 ) 2 4 a 2 R 0
X lattice = a 2 k ( 1 ( k R 0 ) 2 4 a 2 R 0 ) 1 4 R 0 k = c 4 R 0 ω
α = V L i + ε h / ( ε ε h )
ε ( ω ) = ε a ( ε b ε a ) ω p 2 ω 2
X N I A = a 2 k 0 Re { α 1 } = a 2 V ( ε h + L ( ε a ε h ) ) ( ε h ε a ) c ω ω 1 2 ω 2 ω 2 2 ω 2
Z = 1 j ω C 2 ω 1 2 ω 2 ω 2 2 ω 2
C 2 = V a 2 c ε a ε h ε h + L ( ε a ε h )
C 1 = C 2 ( ( ω 2 ω 1 ) 2 1 ) , L 1 = 1 C 2 1 ( ω 2 2 ω 1 2 ) .
ω C P R = 1 L C = ω 1 C 1 + C 2 + C 3 C 2 + C 3
ω C P R = ω 1 1 4.524 F 3 1 + 4.524 K F 3
x i Z 0 = ( Z l Z 0 ) 2 g 0 ω c g i w n = even , x i Z 0 = 1 ω c g 0 g i w n = odd
F = 0.605 ω 1 2 ω 0 2 ω 1 2 + K ω 0 2 3 .
L = c 4 π ( ε a + 2 ε h ) 2 3 ε h ( ε b ε a ) ω p 2 ( 1 + 4.524 K F 3 ) F 3 1 a = E a .
a = E ω 0 x i

Metrics